Fast Distance Queries with Rectangular Swept Sphere Volumes

Eric Larsen
Stefan Gottschalk
Ming Lin
Dinesh Manocha

UNC Chapel Hill

Problem

Finding translation distance between two polygonal models:

- Common in:
 - Path planning.
 - Virtual Prototyping.
 - Dynamics.

Previous Work

- Computational Geometry:
 - Dobkin & Kirkpatrick '82
 - Seidel '90
 - Chazelle '89
- Distance between Convex Polyhedra:
 - Gilbert et al. '88
 - Lin & Canny '91
 - Cameron '97
 - Mirtich '98
- Space Partitioning:
 - Naylor et al. '90
 - Bouma and Vanacek '91

Previous Work

- 4-dimensional Intersection:
 - A. Garica-Alonso et al. '94
 - Hubbard '93
- Distance between NURBs models:
 - Synder et al. '93
 - Cameron '98

Previous Work

- Bounding Volume Hierarchies (BVHs):
 - Detecting Intersection:
 - Convex Hulls: Lin & Canny '91
 - Spheres: Hubbard '93
 - Axis-aligned boxes: Beckmann et al. '90, SOLID
 - Oriented boxes: Gottschalk et al. '96, Barequet et al. '96
 - K-DOPs: Held et al. '96, Klosowski et al. '98
 - Spherical Shells: Krishnan et al. '98
 - Distance Computation:
 - Spheres: Quinlan '94
 - OBBs: Johnson & Cohen '98

- Data structure:
 - Hierarchy of volumes bounding polygon subsets.
- Algorithm:
 - Initialize distance estimate.
 - Recursive search:
 - Compute distance between BVs.
 - If less than distance estimate:
 - Recur on pairs of children nodes.
 - When polygons reached:
 - Revise estimate.

Cost equation:

```
Total Cost = N_{BV} x C_{BV} + N_{P} x C_{P}

N_{BV} = number of BV distance tests

C_{BV} = cost of BV distance tests

N_{P} = number of polygon distance tests
```

C_P = cost of polygon distance tests

- Impacts on cost equation:
 - BV type:
 - Tightness of fit.
 - Cost of each BV distance test.
 - Ways to fit BVs and build hierarchy.
 - Order to search BVHs.
- Analysis:
 - OBB convergence Gottschalk et al. '96.

- Previous variations for distance:
 - Quinlan '94:
 - Spheres.
 - Sets of leaf spheres per polygon:
 - maximum leaf sphere size.
 - Johnson & Cohen '98:
 - OBBs.
 - Breadth-first search.
- Our goals:
 - Tighter fitting BVs like OBBs.
 - Accelerating BVH searching.

BV Choice

- Considered OBBs:
 - Distance calculation.

- Rectangular Swept Sphere:
 - Sphere swept across 3D rectangle.
 - Distance calculation:
 - Distance between 3D rectangles, minus sum of sphere radii.

BV Choice

- Rectangle Distance Calculation:
 - Specialized approach:
 - Voronoi methods, Lin-Canny '91
 - Separating axes, Gottschalk et al. '96
 - ~4 times faster than a general convex polyhedra implementation.
 - Conservative estimation in degenerate cases.

BVH Building

- Building methods from Gottschalk et al. '96
 - One leaf level BV per polygon
 - Top-down recursive building:
 - fit a set of polygons
 - split into subsets and recur
 - Binary hierarchy

Acceleration Techniques

- BVH search uses a distance estimate:
 - Search most efficient when estimate low.
- Polygon Caching:
 - Save closest polygons in one query.
 - Initial distance estimate next time.
 - Empirical 2 times speedup for applications with coherence.

Acceleration Techniques

- Priority-directed Search:
 - Priority queue to search closest BVs first.
 - Queue size limited:
 - recursion on closest BVs when full
 - May reduce extent of search without coherence.
 - O(lg(n)) queue operations.

Comparison

- Compared our software to Quinlan's:
 - More than one difference:
 - Type of BV
 - Fitting one vs. many BVs to a polygon.
 - Polygon caching:
 - Quinlan's software might also benefit.

Benchmarks:

- For two planner scenarios, tried:
 - sequence of calls by randomized planner.
 - sequence of calls walking the path found.

Performance:

- Varied maximum leaf BV size in Quinlan's code.
- Plotted relative speed of our system to Quinlan's

- Similar performance for some leaf sizes:
 - Lowest speedup about 2 times.
- Large speedups at other leaf sizes.
 - Picking the wrong size has large consequences.

- Priority directed search:
 - Reduced our system's performance when walking path:
 - Coherence present.
 - Polygon caching already in effect.
 - Sped up the path planning calls by small factor:
 - Low coherence.

Considerations

- BVH algorithms:
 - Disadvantages:
 - Individual queries vary a lot in cost.
 - Convex polyhedra algorithms faster.
 - Advantages:
 - General polygon input:
 - No restrictions on convexity or topology.
 - Disconnected triangles.
 - E.g., some CAD data.

Software

www.cs.unc.edu/~geom/SSV/