
Collision Detection for
Real-Time Simulation

Eric Larsen
SCEA R&D

Problem Definition

Finding the time, place, depth, or
existence of contact between pairs of
objects in a simulation

Collision

Common Subroutines in a
Collision System

Collision detection: do two models overlap?

Gap detection: does a given gap exist between
two models?

Distance computation: what is the distance
between the models?

Penetration depth computation: what is the
amount of penetration?

Time of impact: what will be the time of impact of
two moving bodies?

Variations of Collision Systems

Collision Scheduling Methods
– methods for choosing when to do collision

checks
Object Representations
– geometric models for objects in a simulator

Broad & Narrow Phase Methods
[Hubbard93]
– Broad phase: methods for culling collision

checks
– Narrow phase: methods for performing each

collision check

Variations of Collision Systems

Collision Scheduling Methods
– Fixed timestep
– Adaptive timestep

• Bisection
• Prediction

Fixed Timestep

Do collision checking at regular time intervals
– Pros:

• Collision scheduling is simple
• Performance is relatively predictable.

– Cons:
• Can miss collisions
• Allows interpenetration of solids
• Needs penetration distance or some heuristic for

computing a separating impulse
• Several opposing impulses can keep objects

interpenetrating

t1t0

Adaptive Timestep 1:Bisection

When collision detected, bisect preceding time
interval until models are separated but close
enough to be considered colliding.
– Pros:

• Prevents penetrations - time is
backed up to earliest collision
before another forward step is taken

– Cons:
• Can still miss collisions
• Rapid collisions will stunt advance of time

t1t.75t.5t0

Adaptive Timestep 2: Prediction

Compute lower bound to time of impact (TOI) for
a pair of models & schedule next collision check
at this time.
– Pros:

• Delays collision checks for distant models
• Prevents penetration and missed collisions

– Cons:
• Close contact increases frequency of checks
• TOI’s require fixed or bounded motion paths - user

input or collision can invalidate all TOIs connected
with a particular object.

t0 t1 t2 t3

Variations of Collision Systems

Object Representations
– Basic primitives

• e.g., spheres, cones, cylinders, boxes
– Polygons/polyhedra

• Polygon soups
• Convex polyhedra
• Closed meshes

– CSG, implicit rep., parametric rep.
– Unions

Variations of Collision Systems

Broad and Narrow Phases [Hubbard93]
– Broad phase:

• bounding box methods
– uniform grid
– hierarchical hash tables
– sweep-and-prune

– Narrow phase:
• convex models

– distance / penetration depth
• polygon soups

– collision / distance

Bounding Boxes
A very common broad-phase tool
Stationary object bounding box
– relevant to fixed timestep scheduling
– place an axes-aligned box around each object

at a given instant
– only do narrow phase collision checking on

pairs of models whose bounding boxes
overlap

Bounding Boxes

Moving object bounding box
[Mirtich96]
– bound sweep of object between

start and finish time
– overlapping boxes indicate possible collisions

during that time interval
– applicable to prediction scheduling

• ordinarily need all TOIs to take a collision-free time
step.

• instead, take a tentative step forward, but compute
TOIs for objects whose sweep bounding boxes
overlap.

• truly advance to smallest TOI found

Uniform Grid
Need to avoid O(n2) box tests with n boxes
Uniform Grid
– divide space into regular grid of cells
– bucket each object box into cells it overlaps
– compare boxes in same cell only - called close

boxes in following slides.

Uniform Grid
Two tricks:
– if grid infinite, store only the finite number of

nonempty buckets in a hash table
– several cells may contain the same pair of

boxes: to report close pairs only once, count
number of times pair found close in 2D table of
close-counters [Mirtich96].

0
2

1
3 0

1
2

10 2 3

3

3 0 0
0 0

2

2D table

Uniform Grid
Problem - choosing cell size
– If too large, many or all objects can

fall in the same cell - still O(n2) cost

– If too small, each object covers many
cells

• Hash table size grows
• Object updates more costly
• A box pair can share many cells

– If objects vary greatly in size, no cell size
solves both problems.

Hierarchical Hash Table
[Mirtich96]

Uses grids at several resolutions.
– n cell sizes chosen, ρ1 through ρn
– For any box size S, the ratio between S and

some cell size ρk is bounded between two
constants, 0 < α < 1, β > 1 :
α < (S / ρk) < β

– i.e., a box takes up at least some fraction α of a
cell size, but no more than β cell sizes at its
“matching” resolution (denoted res(X), for
box X)

Hierarchical Hash Table
[Mirtich96]

1D example - boxes are intervals
– box inserted first in buckets at matching

resolution - boxes in same buckets are close
– 2D table counts times each pair found close

hash table

boxes

close

Hierarchical Hash Table
[Mirtich96]

Boxes at different resolutions may overlap
too:
– Extend close to mean boxes X,Y that overlap

the same bucket at the coarser of the two
resolutions, res(X) and res(Y)

hash table

boxes

closecloseclose

Hierarchical Hash Table
[Mirtich96]

Finding all close boxes
– Each bucket has list A for boxes at its own

resolution and list B for boxes at finer
resolutions (Mirtich describes one list)

– For each box X,
• Insert X in overlapped buckets at res(X):

– put X in list A
– any boxes in list A or B of these buckets are close

• Insert X in overlapped buckets at coarser resolutions:
– put X in list B
– any boxes in list A of these buckets are close

– Time bound O(n + c) where n is number of boxes and c
is number of close box pairs

boxes at res(X)

boxes at
finer res

Bucket at res(X)
A

B

Hierarchical Hash Table
[Mirtich96]

For coherence - preserve hash table, close
counters, and list of close boxes between
invocations.
– When box leaves a bucket, decrement close

counters for close boxes in that bucket
– When box enters a bucket, increment close

counter for close boxes in that bucket
– Decrement to zero takes pair off the close pairs

list; increment to 1 puts the pair on the list.
– A box that stays in the same buckets causes

no updates to the data structures

Hierarchical Hash Table
[Mirtich96]

Extending to dynamically resized boxes:
– Scales of bounding boxes change as

simulation progresses.
– Mirtich suggests that basing resolutions on

maximum radii of objects is adequate.
Extending to 3D:
– Can create 3D grid at several resolutions.
– Could possibly create three 1D grids, and treat

box intervals independently - box pair is close
iff it is close in 3 dimensions.

Sweep and Prune [CLMP95]
(I-Collide)

Different scheme to cull bounding box
comparisons - dimension reduction.
Data structures:
– On each coordinate axis, a box

projects to an interval; keep a sorted
list of interval endpoints on each axis.

– Keep a 2D table that stores for each
pair of bounding boxes whether their
intervals overlap on each axis.

– Keep a list of the overlapping boxes

Sweep and Prune [CLMP95]
(I-Collide)

1
2

1 2 3

3

2D table

yx
y

2

b1b2 e1e2b3 e3

b1

b2
e1

b3
e2

e3

1

3
y endpoint list

x endpoint list

Overlapping Pairs List
1,2

Sweep and Prune [CLMP95]
(I-Collide)

Algorithm:
– Assume data structures are valid for a frame of

the simulation.
– As each box is updated for the next frame,

modify the endpoints in the sorted lists, using
insertion sort to keep lists in sorted order.

– Each swap of a minimum and maximum
endpoint toggles overlap status for a pair of
box intervals.

• if toggle completes 3 interval overlaps for a box pair,
put on overlapping pairs list

• if box pair previously overlapped, take pair off the list

Sweep and Prune [CLMP95]
(I-Collide)

Coherence premise:
– With small shifts of box endpoints between

frames, few swaps expected in sorted lists.
– Clustering problem - dice on a table

[Mirtich96]:
• Each perturbation of a die vertically may

require O(n) swaps, resulting in O(n2) cost.
– Can keep list for 1 axis only

• when a swap makes two intervals overlap,
check other two dimensions of the box pair

• Thus, can drop 2 most problematic
dimensions - still not a general answer to
clustering problem

Variations of Collision Systems

Narrow phase:
– theory: Minkowski Differences
– convex polyhedra:distance/penetration depth

• GJK [GJK88]
• Lin-Canny [LC91]

– polygon soups: collision/distance
• Sphere Trees [Quinlan94] [Hubbard96]
• OBB Trees [GLM96]
• Swept Sphere Trees [LGLM98]

Minkowski Sums and Differences

Minkowski Sum (A, B) = { a + b | a ∈ A, b ∈ B }

Minkowski Diff (A,B) = { a - b | a ∈ A, b ∈ B } =
Minkowski Sum (A, -B)

A and B collide iff Minkowski Diff(A,B) contains
origin.

A

A B

Some Minkowski
Differences

B

A-B

A-B

Minkowski Diff(Translated(A,t1), Translated(B, t2)) =
Translated (Minkowski Diff(A,B), t1 - t2)

⇒ Translated(A, t1) and Translated(B, t2) intersect iff
Minkowski Diff(A,B) contains point t2 - t1.

Minkowski Difference
and Translation

If A & B convex, Minkowski Diff(A,B) is convex
Distance:
– distance(A,B) = min a ∈ A, b∈ B || a - b ||2
– distance(A,B) = min c ∈ Minkowski-Difference(A,B) || c ||2
– if A and B disjoint, c is closest point to origin on

boundary of Minkowski difference

Penetration-Depth:
– penetration (A,B) = min{ || t ||2 | A ∩ Translated(B,t) = ∅ }
– penetration (A,B) = mint ∉Minkowski-Difference(A,B) || t ||2
– if A and B intersecting, t is closest point to origin on

boundary of Minkowski difference

Other Properties

Other Properties

However, distance & penetration-depth not
equally matched problems, even for convex
models:
– Distance - one local minimum

– Penetration Depth - many local minima

Practicality

Expensive to compute boundary of Minkowski
Difference:
– structure changes if objects rotate independently
– For two convex polyhedra with m and n vertices,

Minkowski Difference may take O(m × n)
– For polygon soups, no practical algorithm known.

However, GJK algorithm uses Minkowski
Difference quite efficiently to find distance,
computing it on demand.

GJK Method for Convex Polyhedra
GJK-DistanceToOrigin (P) // dimension is m
1. Initialize point set P0 with m+1 or fewer points of P
2. k = 0
3. while (TRUE) {
4. if origin is within CH(Pk), return 0
5. else {
6. find x ∈ CH(Pk) closest to origin, and simplex Sk ⊂ Pk s.t. x ∈ CH(Sk)
7. see if any point p-x in P more extremal in direction -x
8. if no such point is found, return |x|
9. else {
10. Pk+1 = Sk ∪ {p-x}
11. k = k + 1
12. }
13. }
14. }

GJK - 2D Example

Each iteration of the while loop requires O(n)
time.

O(n) iterations possible, but authors claim
between 3 and 6 iterations on average for any
problem size, making this expected linear.

Trivial O(n) algorithms exist if we are given the
boundary representation of a convex object, but
GJK will work on point sets - computes CH lazily.

Also, extends readily to two convex point sets

GJK - Running Time

A = CH(A′) A′ = { a1, a2, ... , an }
B = CH(B′) B′ = { b1, b2, ... , bm }

Minkowski-Diff(A,B) = CH(P), P = {a - b | a∈ A′, b∈ B′}
Thus, GJK-DistanceToOrigin(P) will find distance(A, B),
but P has m × n points.
Solution - compute points of P on demand:
– p-x = a-x - bx where a-x is the point of A′ extremal in direction -x,

and bx is the point of B′ extremal in direction x.
The loop body would now take O(n + m) time,
producing the same expected linear performance
overall.

GJK - Two Convex Objects

Penetration Depth [Cameron97]
– Estimate penetration depth by finding some point on

Minkowski Difference boundary.
– Highest quality estimates with coherence and

shallow intersections.

Coherence
– Models may transform very little between distance

checks.
– Cache previous closest points, search neighborhood

of closest points find new closest points

GJK - Extensions

Foundations:
– Coherence in object transforms between

distance checks.
– One can confirm that two features (edges,

vertices, faces) are the closest points of two
convex objects in constant time, given some
preprocessing of the polyhedra.

Method:
– track closest points
– after each transformation, make expected

constant time adjustment of closest points

Lin-Canny Method for Convex
Polyhedra

Voronoi Regions

Localized verification of closest features
made possible by precomputing an
external Voronoi diagram for the
polyhedron

External Voronoi diagram - divide space
outside polyhedron into regions, such that
points inside each region are closest to a
corresponding “feature” - a face, edge, or
vertex - of the polyhedron.

Voronoi Regions

Lin-Canny Algorithm

Given one feature from each polyhedron, find the
closest points of the two features. If each point is
in the Voronoi region of the other feature, closest
features have been found.

Vb in Voronoi(Ea)

Pa in Voronoi(Vb)

Lin-Canny Algorithm

Otherwise, one of the points (call its feature F) is
in the Voronoi region of another feature F′, and
therefore closer to it. Can select F and F′ as next
candidate feature pair.

Lin-Canny Running Time

Distance strictly decreases with each change of
feature pair, and no pair of features can be
selected twice.

Worst case O(m × n) pairs checked.

Convergence to closest pair typically much
better:
– “near” constant time in simulations with coherence.
– Closer to O(m + n) even in worst case.

Lin-Canny Extensions

Penetration Depth
– Original algorithm would not terminate if input

polyhedra overlapped
– Extension divides interior of polyhedra into

pseudo-Voronoi regions.
– Overlap can be detected and penetration depth

approximated.

Extensions of convex methods to non-convex
models not obvious.
Convex assumptions no longer valid:
– Discontinuous change of closest features with

transformations
– When a local minimum is found, no longer able to

disregard rest of the model.

Non-Convex Models

Could decompose into convex pieces:
– Distance: take minimum distance over all pairs

of pieces
– Penetration Depth: not maximum penetration

depth, although can still estimate it.
Problems:
– If m & n are number of convex pieces in each

model, O(m × n) pairs
– Minimal decomposition is NP-hard, although

approximations exist for closed solids.
– No solution for polygon soups besides list of

polygons

Non-Convex Models

BVHs can improve O(m×n) performance of
distance & collision detection on m, n pieces
Most commonly associated with polygon soups:
– Each node has a shape that bounds a set of polygons.
– Children contain volumes that each bound a different

portion of the parent’s polygons.
– The leaves of the hierarchy usually contain individual

polygons.
A binary BVH for some line segments:

Bounding Volume Hierarchies

BVH Collision Detection

Check root BVs first
If BVs do not overlap, no
contained polygons can
overlap
Else, subdivide one BV
into its children, giving
two new BV pairs
Recursively check each pair

1. Recursive-Collide(BV a, BV b) {
2. if (! bv-overlap(a,b)) return;
3. if (leaf(a) and leaf(b)) {
4. tri-overlap(tri(a), tri(b))
5. }
6. else if (!leaf(a)) {
7. Recursive-Collide(lchild(a), b)
8. Recursive-Collide(rchild(a), b)
9. }
10. else {
11. Recursive-Collide(a, lchild(b))
12. Recursive-Collide(a, rchild(b))
13. }
14. }

BVH Collision Detection

Test at least one pair of triangles to get a
candidate minimum distance.

Terminate recursion when distance between
bounding volumes greater than candidate
minimum distance.

BV distance generally more expensive than
overlap - why?

BVH Distance Computation

1. Recursive-Distance(Real distance, BV a, BV b) {
2. if (bv-distance(a,b) > distance) return;
3. if (leaf(a) and leaf(b)) {
4. distance = min(distance, tri-distance(tri(a), tri(b)))
5. }
6. else if (leaf(b) or (!leaf(a) and size(a) > size(b))) {
7. Recursive-Distance(distance, lchild(a), b)
8. Recursive-Distance(distance, rchild(a), b)
9. }
10. else {
11. Recursive-Distance(distance, a, lchild(b))
12. Recursive-Distance(distance, a, rchild(b))
13. }
14. }

BVH Distance Computation

BVH Distance Computation

Distance Demo

Assume first candidate minimum distance
found is the actual minimum distance.
For each bv test, could use either:
– bv-distance(a,b) > distance
– !bv-overlap(a, b grown by distance)

i.e., distance with BVH at its best is like
collision detection with one BVH grown by
minimum distance
Explains why performance is worse.

BV Types
Spheres [Hubbard93, Quinlan94]

AABBs [PML95, SOLID97]: axis-aligned bounding
boxes

OBBs [GLM96, BCGMT96] - oriented bounding boxes

K-DOPs [KHM+96] - polytopes with k discrete face
orientations

Convex Hulls [LC92, Lin93]

Spherical Shells [KPLM98] - portions of space between
concentric spheres

Swept-spheres - sphere extended primitives

Evaluating BV Types

Common BV choice trade-off:

– tightness of fit; power to “prune” search

– speed of BV overlap/distance tests - includes
speed of transforming BV as BVH rotates

Spheres

Very fast overlap/distance tests
Poor fit for elongated or flat geometry

AABBs

Very fast overlap/distance test without
rotation.
Tightness depends on orientation of geometry
With rotation, need OBB tests, or to realign
boxes with axes (increases test cost)

OBBs

Overlap test more expensive, but well
optimized / no optimized distance test yet.
Tighter fit, even for flat, long geometry.

Convex Hull Tree

Overlap test very expensive - even with
coherence.
Tightest fit among convex BVs

Evaluating BVHs
How BVs are placed around geometry is as
important as which type used:
– BVHs should partition space
– When children mostly overlap each other and

parent, split is wasted.

Good Split Bad Split

Hierarchy building:

– First tiles surface of triangles with many small
spheres, so that many leaf nodes may have a
pointer to the same triangle.

– Builds a hierarchy top down that bounds these
spheres, instead of triangles.

Sphere Trees [Quinlan94]

Sphere Trees [Quinlan94]

Distance Computation:

– Same method as previously outlined, except
that many leaf node pairs may correspond to
same triangle.

– Triangle pair distances are hashed to avoid
redundant computations.

Sphere Trees [Quinlan94]

Sphere Trees[Hubbard96]

At lowest level, approximates model with
spheres:
– Distributes points evenly over surface of model
– Builds 3D Voronoi diagram, capturing skeletal

shape.
– Each leaf sphere bounds four Voronoi vertices

Hierarchy built by merging pairs of spheres
– Merges prioritized by tightness of resulting sphere
– Does merges to make 8 children for root, recurs

on each of the 8 children

Sphere Trees [Hubbard96]

Sphere Trees [Hubbard96]

Time-critical collision detection
– Do subdivision until available time runs out.
– Base collision-response on overlapping

spheres at whatever level reached.

Exact collision detection
– Keep pointer to covered polygon in each leaf

sphere; compare polygons when two leaf
spheres overlap - similar to Quinlan’s
approach

OBB Trees [GLM96]
(RAPID)

Hierarchy built downward - “split and fit”
– Root box fits all triangles
– Triangles are split into two subsets
– Boxes recursively fit to subsets

Fitting method:
– Box orientation obtained from eigenvectors of

the covariance matrix of the vertices.
– Axes can align with a row of vertices, reducing

tightness of fit.
– Sampled convex hull of vertices works better

OBB Trees [GLM96]
(RAPID)

OBB overlap test based on separating axis
theorem:
– Two convex polyhedra are disjoint iff their

projections on one of the following axes are
disjoint:

• the face normals of the polyhedra
• all cross products of two edge directions,

one from each polyhedron.
– With OBB’s there are only 15 such axes.
– Box orthogonality yields optimizations: most

dot products needed are encoded in relative
orientation between the boxes.

OBB Trees [GLM96]
(RAPID)

Check whether axis L separates boxes:

s
ha

L

hb

OBB Trees [GLM96]
(RAPID)

Which factor dominates - fit or cost of
tests?
– Gottschalk formalized this somewhat: showed

OBBs converge to finely tesselated geometry
asymptotically faster than spheres or AABBs.

– For two close parallel surfaces, OBBs can be a
big win.

– In many experiments, OBBs have justified
higher test cost

AABB Trees
[SOLID97]

Builds AABB tree to model, but reorients
AABBs with model.
– OBB tests needed, but only one relative

orientation between pair of OBBs when
comparing two hierarchies.

– Reduces OBB test cost, but loses convergence.

– Efficient extension for deformable models.

Swept Sphere Trees [LGLM98]
(PQP)

OBBs have good convergence properties, but
what about distance computation?

Premise:
– Spheres are cheap - you get a lot of mileage

out of a point and a uniform offset

– Could replace point with something more
complicated, like a line or rectangle.
Equivalent to sweeping sphere along that shape.

– Distance between swept spheres is distance
between the core shapes minus the sphere radii.

Swept Sphere Trees [LGLM98]
(PQP)

Why points, lines, and rectangles?
– Line-swept spheres fit elongated shapes
– Rectangle-swept spheres fit flat shapes / orthogonal
– Give a variation of fit quality, storage needs, and

distance test cost.
– Once rectangle-pair distance test available, all other

pairwise distance tests are easy - good candidate for
hybrid hierarchies

Swept Sphere Trees [LGLM98]
(PQP)

Rectangle Distance Test:
– If closest points are on edges

• Lin-Canny style approach to find edge-pair with closest
points

• Simple Voronoi regions (half-spaces) make this efficient

– Otherwise:
• Takes projections of rectangles on face normals
• Max separation of these projections is distance

Swept Sphere Trees [LGLM98]
(PQP)

Performance:
– To date, using all types not faster than using rectangles only.

– In several experiments, faster than Quinlan’s distance
library, after standardizing triangle-pair test; using small
spheres w/ Quinlan’s library makes performance similar, but
requires large amounts of memory.

– Besides BVs, coherence trick aided our system:
• Cache the closest triangle pair, and use to initialize the

distance estimate in next query: yields small factor of
speedup

– Slower than RAPID for checking overlap

Swept Sphere Trees [LGLM98]
(PQP)

Future possibilities with PQP:
– Incorporate points and lines for higher

performance and/or lower memory usage.
– Use BVs to approximate object shape [Hubbard96]
– Providing multiple contact points for constraint

forces [Baraff89]

Conclusions

Many different methods in existence for
engineering a collision system.

Unfortunately, numerous sacrifices and
trade-offs:
– object complexity v. algorithm speed / available

algorithms
– realistic simulation v. real-time performance

Conclusions

Big strides could still be made with
nonconvex models:
– BVHs not quite satisfying: Convex model

algorithms nicely exploit coherence, estimate
penetration depth

– On the other hand, BVHs work with very
general input.

– Playstation2-optimized version of PQP in the
works...

The End.

[BCG+96] Barequet, Chazelle, Guibas, Mitchell, Tal - Boxtree: A
hierarchical representation of surfaces in 3d - 1996
[Baraff89] David Baraff - Analytical Methods for Dynamic
Simulation of Non-penetrating Rigid Bodies - 1989
[Cameron97] Stephen Cameron - Enhancing GJK: Computing
Minimum and Penetration Distances between Convex Polyhedra -
1997
[CLMP95] Cohen, Lin, Manocha, Ponamgi - I-COLLIDE: An
interactive and exact collision detection system for large-scale
environments - 1995
[GJK88] Gilbert, Johnson, Keerthi - A Fast Procedure for
Computing the Distance Between Complex Objects in Three-
Dimensional Space - 1988
[GLM96] S. Gottschalk, M. Lin, D. Manocha - Obb-tree: A
hierarchical structure for rapid interference detection -
http://www.cs.unc.edu/~geom/OBB/OBBT.html - 1996

References

[Hubbard93] Philip Hubbard - Approximating Polyhedra with
Spheres for Time-Critical Collision Detection - 1996
[Hubbard96] Philip Hubbard - Interactive Collision Detection - 1993
[KHM+98] Klosowski, Held, Mitchell, Sowizral, Zikan - Efficient
collision detection using bounding volume hierarchies of k-dops -
1998
[KPLM98] Krishnan, Pattekar, Lin, Manocha - Spherical shell: A
higher order bounding volume for fast proximity queries - 1998
[LGLM98] Larsen, Gottschalk, Lin, Manocha - Fast Proximity
Queries with Swept Sphere Volumes (tech. report) -
http://www.cs.unc.edu/~geom/SSV/ - 1998
[LC91] Lin, Canny - A fast algorithm for incremental distance
calculation - 1991
[Lin93] Ming Lin - Efficient Collision Detection for Animation and
Robotics - 1993

References

[Mirtich96] - Impulse-based Dynamic Simulation of Rigid Body
Systems - 1996
Moore, M. and Wilhelms, J. - Collision detection and response for
computer animation - 1988
[PLM95] Ponamgi, Manocha, Lin - Incremental algorithms for
collision detection between solid models.
[Quinlan94] Sean Quinlan - Efficient Distance Computation
between Non-Convex Objects - 1994
[SOLID97] SOLID Interference Detection System
http://www.win.tue.nl/cs/tt/gino/solid - 1997

References

