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Abstract

This presentation describes a set of techniques for implementing a fast and stable dynamics simulator for articulated charac-
ters using an analytical constraint approach combined with Featherstone’s linear-time forward dynamics algorithm. It presents
an efficient method for enforcing multiple simultaneous constraints on an articulated character in order to control the charac-
ter’s motion and model its interactions with the environment. The technique described employs an optimized process derived
from Featherstone’s recursive algorithm to form a linear system representing the constraint conditions at each time instant of
the simulation. The system is subsequently solved to compute the exact magnitude of the forces necessary to satisfy these
constraints. This work demonstrates how a combination of unilateral and bilateral constraints can be used to model the effects
of impacts and contacts, to enforce joint limits, and to accurately control limb motion through trajectory following. The algo-
rithms are presented from a practical standpoint and pseudocode is provided to facilitate their implementation. The goal of this
presentation is twofold: first, to convince developers that building a practical, stable, real-time physics simulator for articulated
characters is a tractable problem, and second, to give them enough confidence and information to start building one for their
game.

1 Introduction

The impressive capabilities of the latest generation of video game hardware have raised our expectations of not only how digital
characters look, but also how they move. As a result, game developers are becoming increasingly interested in animation tech-
niques to generate natural looking motion for the complex characters that populate the modern game worlds. These characters
should be able to respond realistically to unpredictable user control and interact with their environments in a believable way,
requirements that traditional hand animation and motion capture fail to adequately address.

Developers are beginning to look at physics as a way to address some of the shortcomings of keyframed motion. Until
recently, physics was considered an off-line process, but faster hardware and improved algorithms have helped change that
perception. As a matter of fact, it is quite common these days for games to use real-time dynamics solvers for particles,
cloth, soft and rigid bodies. These techniques are becoming more mainstream, partly through the licensing of efficient physics
middleware and partly via in-house development of such systems using the wealth of information available on the internet, in
articles, tutorials, and books.

The next logical step, and one that is highly anticipated, is to use physics to improve the realism of articulated character
movement. After tackling secondary motions such as those of bellies and ponytails, developers are turning their attention to full
body motion for staging dramatic death scenes, modeling high impact collisions between football players, simulating reactions
to kicks and punches, etc. Middleware is of some help here as well, and the first character physics engines are already available.
However, in comparison to particle systems and rigid bodies, significantly less information is publicly available on how to build
articulated body physics simulators, especially ones that can withstand the rigors of a user controlled video game environment
and still run in real-time and provide adequate control.

This presentation will describe a set of techniques that we have used at the Sony Playstation R&D group to build such a
simulator from the ground up. The articulated body physics simulation project is part of our ongoing research on advanced
character animation techniques for the current and future generations of video games. The resulting simulator has proven to
be stable, require minimal user tuning, and achieve real-time performance even for moderately complex characters. It supports
common joint types in arbitrary skeleton hierarchies and offers an intuitive motion control interface.

When starting to look into dynamics formulations for articulated bodies, one can easily get overwhelmed by the number of
available choices. For reasons that will be explained in the next section, we chose Featherstone’s Articulated Body Method
(ABM) as a base for the simulator. The ABM is an established algorithm that efficiently evaluates the motion equations of
arbitrary articulated skeletons. As the ABM does not provide any means to directly handle collisions and joint limits, and
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because we did not want to resort to using penalty forces, we implemented a constraint solver to deal with them. This solver
is invoked at every frame of the simulation and computes a set of forces and torques that, when applied to the body, will result
in a motion that satisfies the given constraint conditions. The heart of the solver is an efficient algorithm derived from the
ABM. This algorithm procedurally creates a linear system representing the constraint conditions which is subsequently solved
to produce the constraint forces.

Although the intent of this presentation is to address most of the basic components of the simulator, a large emphasis will be
on motion constraints and the algorithms that we developed to resolve them. The presentation will start with a brief overview
and comparison of the available methods for generating the equations of motion of articulated bodies. It will then proceed
to cover the basic concepts of Featherstone’s ABM, the method used by this simulator. Building on the ABM algorithm, the
presentation will continue with an in-depth description of the constraint solver and explain how to resolve multiple simultaneous
constraints on the character motion. The algorithms will be presented from a practical rather than a theoretical standpoint and
pseudocode will be provided to facilitate their implementation by other developers. After the general constraint framework is
described, details of how the impacts, contacts, joint limits, and motion control can be expressed as motion constraints will
be presented. The presentation will close with a brief discussion on the remaining challenges in using physics for character
simulation.

2 Background

2.1 Equations of Motion

An articulated body consists of rigid links connected by joints. In the absence of joints, each link would have six degrees of
freedom (DOFs), three translational and three rotational. However, since joints restrict the relative motion of the links they
connect, the total number of DOFs of an articulated body withm links is less than 6m. The dynamic equations of motion of
an articulated body describe the link accelerations with respect to the body’s current state and the forces acting on it. These
equations appear in the literature in a number of different forms. However, depending on how the connections between the
links are treated, the methods for deriving them can broadly be categorized in one of two classes.

Maximal coordinatemethods treat each link as a separate rigid body and use explicit constraints to remove the extraneous
DOFs. An articulated body withm links andn < 6mDOFs, uses 6mstate variables and requires 6m−n constraint equations to
represent the joints. These methods have become popular with computer graphics practitioners as they are a direct extension of
well understood and documented rigid body techniques [Baraff et al. 1999; Hecker 1998; Eberly 2004]. The additional issues
regarding the explicit joint constraints are covered in detail in [Shabana 1994; Baraff 1996]. An interesting variation of the
standard maximal coordinates methods appears in [Jacobsen 2001] where constrained particles are used instead of rigid bodies
to represent the body’s links.

Reduced coordinatemethods implicitly incorporate the joint constraints into the formulation of the equations of motion, and
therefore use then joint angles directly as state variables. The equations of motion for a specific articulated body can be derived
in advance by hand (a tedious process for anything but the simplest hierarchies), or with the help of specialised software like
[Hollars et al. 1991]. Alternatively, an appropriate algorithm like Featherstone’s ABM [Featherstone 1987] can be used to
evaluate them at run-time.

In terms of performance, there are implementations of both maximal and reduced coordinate methods that can run inO(n)
time and there has not been conclusive evidence that one method consistently outperforms the others. In practice, there are
other factors to be considered when making a choice on what method to use for a character physics system. Maximal coordinate
methods are credited with being modular and easy to understand and implement. However, their main drawback is that they
operate in Cartesian space, dealing with link positions and orientations instead of the more intuitive joint space of reduced
coordinates that deals directly with the joint angles. As a result, common tasks such as evaluating joint angles and velocities,
enforcing joint limits, and even applying internal torques to achieve a specific motion require awkward conversions between
the two spaces. Additionally, inaccuracy in numerical integration can cause links to drift apart leaving the articulated body
in an invalid state. While maximal coordinate methods might be adequate for simple rag-doll type effects, we believe that
they are less well suited for more complex character animation and especially motion control. For that reason we chose to use
Featherstone’s ABM an efficient, linear-time, reduced coordinate method that evaluates the equations of motion of arbitrary
articulated bodies. The ABM supports the common joint types used by modelling packages, and if the short length of the
pseudocode in section 3 is any indication, it is not very difficult to implement.
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2.2 Constraints

The ABM algorithm simply computes the accelerations of the articulated body given its current state and any external forces
and joint torques acting on it. Any additional restrictions on the motion such as those imposed by contacts and joint limits
have to be dealt with separately through the application of appropriate forces and torques. Computing the magnitudes of the
forces that simultaneously satisfy multiple constraint conditions is not trivial, especially for complex articulated bodies. By
far the easiest to implement technique for constraining body motion ispenalty methods. Penalty methods work by introducing
restoring forces after the constraints are violated. These methods have been extensively used in computer graphics, espe-
cially for preventing interpenetration between bodies in contact. The restoring force approach is also the basis of Proportional
Derivative (PD) controllers commonly used to generate joint torques for animated articulated characters. Unfortunately, these
methods are not practical in real-time applications since they have a detrimental effect on the stability of the simulation unless
either sophisticated (and computationally expensive) integration techniques are used or the integration timestep is significantly
reduced.

A more appropriate solution is provided by a different class of techniques, often calledanalytical methods, that work by
computing the exact magnitude of forces that will satisfy the constraints down to the acceleration level in every step of the
simulation. These methods have proven to be accurate, require no parameter tuning by the user, and have the ability to support
relatively large integration steps without sacrificing stability. A common application of analytical methods is in resolving
explicit joint constraints resulting from the use of maximal coordinates [Baraff 1996], but they have also been used in the
context of constrained rigid body motion [Witkin et al. 1990; Barzel and Barr 1988; Gleicher 1994]. One of the most successful
uses of analytical methods in real-time simulation is in computing contact forces between colliding rigid bodies [Baraff 1994].
Analytical methods work by constructing a linear system of the form:

Af +b = a, (1)

whose size is equal to the number of constraint conditions. An appropriate solver (as we will see later, the system might not
be strictly a system of equations), solves for the magnitudesf of the constraint forces that are subsequently applied to the
body. The matrixA and vectorsb anda depend on the current state of the body and the constraint conditions, and need to be
evaluated at every step of the simulation. Unfortunately, deriving exact expressions for the elements ofA andb is not trivial,
especially when complex articulated bodies are involved. This problem was solved with an easy-to-implement procedural
algorithm presented first in [Kokkevis and Metaxas 1998] and repeated here in section 4.2. The algorithm uses test forces and
repeated evaluations of the ABM equations to compute the elements of the system. A further performance improvement was
achieved with a new algorithm, derived directly from Featherstone’s recursive equations and presented in section 4.3. These
two algorithms allowed us to take advantage of all the previous work done on analytic constraints techniques, including the fast
contact force determination method of [Baraff 1994], and use them in conjunction with ABM.

3 Featherstone’s Articulated Body Method

Character skeletons in commercial animation packages consist of multiple-DOF joints and the bones are arranged in a tree-like
hierarchy with the root bone free to move in space. In contrast, the articulated body model in Featherstone’s original algorithm
is more restrictive and consists ofn rigid links connected byn single-DOF joints in a branch-free chain. Links and joints are
numbered from 1 ton such that jointh connects linkh to its parent linkh− 1. Additionally, joint 1 connects link 1 to an
immobile base. Fortunately, there is a straightforward technique for converting between the two representations. A general
k-DOF character joint can be converted to an equivalent series ofk links connected by single-DOF joints with the firstk−1
links having zero length. The free moving root of the original character can be modeled by adding six zero-length links at the
top of the articulated body chain, connected via three prismatic and three revolute joints. Alternatively, a free rigid body can be
substituted for the root link. The equations appearing in this section depend on a consistent numbering scheme for the links: if
link i is the parent of linkj, theni will be less thanj.

In the remainder of the paper, the termarticulated bodyrefers to a branched linked structure compliant with Featherstone’s
representation as described above, and the termjoint refers to a single-DOF joint, which could be either prismatic or more
commonly revolute.

The state of ann-DOF articulated body at any time instant is fully described by its joint variablesqi and their first derivative
q̇i . For the sake of simplicity, the joint variables of both revolute and prismatic joints will be referred to as joint angles even
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thought prismatic joint variables represent translations. A singlen-dimensional vectorq is used to collectively represent all the
joint angles; their velocities and accelerations will be denoted byq̇ andq̈ respectively.

Featherstone’s algorithm computes the accelerationsq̈ of an articulated body given the body’s current state and any external
forcesfE and joint torquesG acting on it. The computation takes place in three distinct loops, two outbound, from the root link
to the leaves, and one inbound, from the leaves to the root. Every one of then links is visited once in each of the three loops
which explains the algorithm’sO(n) performance.

The following procedure is based on the original work of Featherstone [Featherstone 1983; Featherstone 1987], extended to
branched chains. It is included here both for completeness and because it is subsequently used in section 4.3 to derive the new
constraint matrix evaluation algorithm described in this work. A brief introduction to the six-dimensional spatial algebra used
by these equations is included in Appendix A. A ground up derivation of the ABM algorithm that does not require a strong
background in mechanics can be found in [Mirtich 1996].

1 proc ABM Accelerations(q, q̇, FE, G)
2 v̂0 = 0̂
3 (* First outbound loop *)
4 for i = 1 to n
5 j ← index of parent of linki
6 v̂i = iX̂ j v̂ j + ŝi q̇i

7 p̂v
i = v̂i×̂Î i v̂i− f̂E

i
8 ĉi = v̂i×̂ŝi q̇i

9 (* Inbound loop *)
10 for i = n to 1
11 ÎA

i = Î i

12 p̂i = p̂v
i

13 for j = 1 to numChildren(i)
14 k← index of j th child of i

15 ÎA
i += iX̂k(ÎA

k −
ĥkĥ′k
dk

)kX̂ i

16 p̂i += iX̂k(p̂k + ÎA
k ĉk + uk

dk
ĥk)

17 ĥi = ÎA
i ŝi

18 di = ŝ′i ĥi

19 ui = Gi− ĥ′i ĉi− ŝ′i p̂i

20 (* Second outbound loop *)
21 â0 = 0̂
22 for i = 1 to n
23 j ← index of parent of linki

24 q̈i = ui−ĥ′i i X̂ j â j
di

25 âi = iX̂ j â j + ĉi + ŝi q̈i

In the above procedure, every linki has an associated spatial velocity,v̂i , spatial acceleration,̂ai , and joint acceleration, ¨qi .
The articulated body inertia that represents the relationship between a force applied to the link and the resulting acceleration is
denoted bŷIA

i . The spatial transformation from the coordinate system of linkj to the coordinate system of linki is represented
by iX̂ j . Finally, the variableŝci , ĥi , di andui help eliminate repetitive evaluations of common subexpressions.

From the accelerations ¨qi computed by this procedure, anumerical integrator, can evaluate the body’s motion over time
given a start state and the external forces and joint torques acting on the body. While there are many choices of integrators go,
we have found that our constraint force evaluation algorithm avoids large spikes in the applied forces and as a result a simple
Euler integrator with appropriate sub-frame stepping works well in most cases.
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4 Acceleration Constraints

Most interesting physics based animations of articulated characters involve interaction with the environment. Characters are
also expected to observe the same biomechanical limits in their range of motion as their real-life counterparts. The feet of the
character cannot go below the ground, arms cannot swing through the torso, and elbows and knees cannot bend backwards.
All these conditions impose certain natural constraints on the motion which should be enforced. In the context of computer
animation, the character’s limbs are often required to follow a certain motion path commonly described as a series of joint
angles over time. A walk cycle, a jump, a punch are examples of such motions that impose additional constraints on the
character.

This section deals specifically with the problem of converting a set of such constraints into a linear system similar to that in
equation 1 that can be solved to obtain the necessary constraint forces. For simplicity, in the remainder of the paper we will use
the termgeneralized forcesto refer to both the external forces and internal joint torques that are necessary to resolve the various
constraint conditions. Two algorithms will be presented that procedurally fill in the entries of matrixA and vectorb. The first
algorithm will make direct use of the ABM procedure detailed in section 3, while the second one will use an optimized variant
of that procedure.

Common constraints in articulated body motion can be expressed in terms of the body’s accelerations. For example, a point
on the body whose velocity is currently zero can be prevented from moving by setting its acceleration to zero. In dynamics
simulation, at any time instant the state of an articulated body is fully described byq andq̇, the joint angle and velocity vectors
respectively. Because time is advanced in discrete steps in numerical integration, at a given instant, any force acting on the body
affects only the joint accelerationsq̈. Joint angles and velocities will change only after the integrator is invoked to compute the
state at the next instant. This property of numerical integration is explored by the technique described in this work to compute
a set of constraint forces at every time instant that, when applied to the articulated body, will satisfy a set of acceleration
constraints.

It can be shown that, at a given time instant, there is a linear relationship between the magnitude of a generalized force applied
to the body and the magnitude of the acceleration of the body’s joints or links. The proof is in Appendix A. This relationship
can be described as follows:

af = k f +a0, (2)

wherea0 andaf are the observed acceleration magnitude before and after the force is applied, respectively;f is the magnitude
of the force andk is some scalar constant. The observed acceleration,a, can represent the acceleration, ¨q, of any of the body’s
joints or the magnitude of the linear acceleration,aP, of some pointP on a link of the articulated body. By extension, for any
linear function of the joint accelerations,h(q̈), the following relationship holds for somek:

h(q̈ f )−h(q̈0) = k f, (3)

whereq̈0 andq̈ f are the vectors of joint accelerations before and after the force is applied. The vectorq̈0 will be referred to as
thedefault accelerationvector and the differenceh(q̈ f )−h(q̈0) as thenet effectof f on the functionh.

Most common useful acceleration constraints, such as setting the acceleration of a joint or a point on a link to some desired
value, can be expressed as a linear constraint functionh(q̈) = a−ad. The constraint will be satisfied with an appropriate joint
acceleration vector,̈qc such thath(q̈c) = 0.

4.1 Single Constraint

To make things a bit more concrete, imagine that we would like to set the acceleration of some arbitrary jointl of the articulated
body to some desired value ¨qd

l . In other words, we need to find a torquegc that when applied at jointl will cause the acceleration
of l to become ¨qc

l = q̈d
l . An easy way to compute the desired torque,gc, using the results from the previous section and the

ABM algorithm would be the following: Making a call toABM Accelerations(), compute the default acceleration of joint
l , q̈0

l . This acceleration reflects the current state of the body and all the forces acting on it at this particular time instant. Next,
apply a test torque of some known (non-zero) magnitudegt on joint l , call ABM Accelerations() and record the new joint
acceleration ¨qt

l . According to equation 2 the following relationship must hold:

q̈t
l = kgt + q̈0

l , (4)
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from which we can computek as:

k =
q̈t

l − q̈0
l

gt . (5)

Additionally, since according to equation 2 the following relationship holds:

q̈c
l = kgc + q̈0

l , (6)

we can combine equations 4 and 6 to compute the desired constraint torquegc from:

gc = gt q̈c
l − q̈0

l

q̈t
l − q̈0

l

. (7)

The constraint expressionh(q̈) in this simple example would have beenh(q̈) = q̈l − q̈d
l . In general, for linear functionh(q̈),

the constantk and the generalized constraint forcef can be computed as follows [Kokkevis and Metaxas 1998]:

1. Before applying any force to the articulated body, compute the default accelerationsq̈0 and the value ofh(q̈0).

2. By applying a test force of some known (non-zero) magnitudef t , compute the resulting accelerationsq̈t and evaluate
h(q̈t).

3. Using (3) computek as:

k =
1
f t (h(q̈t)−h(q̈0)). (8)

The main advantage of this technique is that it reuses the ABM algorithm that you presumably already have, and therefore
requires very little additional coding. As a matter of fact, any algorithm that evaluates the body’s accelerations could be used
instead of ABM. A call to the ABM procedure takesO(n) time for ann-DOF articulated body and even though two calls to
ABM Accelerations(), one forq̈0 and one for̈qt , are required, the overall asymptotic complexity is stillO(n).

Setting the acceleration of a point on a link of the articulated body to some desired value is achieved in the same way. The
goal when solving for such a constraint is to compute an appropriate external force,fc, which, when applied to a pointP on
the body, will make the accelerationaP of P equal to some desired valuead

P. Since constraint expressions are scalar functions,
a single constraint can only set the acceleration along one direction in space. Notice how equation (32) demonstrates that,
at a given time instant, the acceleration of any point on the articulated body can be written as a linear function of the joint
accelerations. Therefore a linear functionh(q̈) = aP(q̈)−ad

P can be defined, withaP(q̈) andad
P the magnitudes of the actual

and the desired acceleration ofP along some direction vector~ı. The test force must be acting along the same direction to
guarantee a non-zero net effect on the acceleration magnitude. As a result, the computed constraint force will also be along the
direction of~ı.

4.2 Multiple Constraints

So far the technique described computes a single constraint force to satisfy one scalar acceleration constraint. If multiple
constraints are to be enforced simultaneously, the problem becomes harder to solve. A force applied on the body to help
enforce one constraint will potentially alter the acceleration of multiple joints and therefore affect other constraints as well. The
constraint equations must be solved simultaneously to achieve the desired results.

Considerm constraints, each with a corresponding scalar constraint functionhi(q̈) such thathi(q̈) = 0 when constrainti is
satisfied. The goal is to find an appropriate set ofm forces, f c

i , that will satisfy all the constraints simultaneously. According to
equation 3, the net effect of a forcefi on a constraint expressionh j(q̈) will be equal toki j fi for some constantki j . Adding up
the effect of all the forces for each constraint results in the following system of equations:

h1(q̈)−h1(q̈0) = k11 f1 +k12 f2 + · · ·+k1m fm
h2(q̈)−h2(q̈0) = k21 f1 +k22 f2 + · · ·+k2m fm

... (9)

hm(q̈)−hm(q̈0) = km1 f1 +km2 f2 + · · ·+kmmfm
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In matrix form, the system can be written as:
h−h0 = Kf , (10)

whereh andh0 are them×1 vectors ofhi(q̈) andhi(q̈0) respectively,K is them×mconstraint system matrix consisting of the
elementski j , andf is them×1 vector of forcesfi . Settingh = 0 and solving for the force magnitudesf computes the constraint
forces that will simultaneously satisfy all the acceleration constraints.

The elementski j of K can be computed using test forces with a process similar to the one described in the single constraint
case:

1. Before applying any additional forces on the articulated body the default joint accelerations,q̈0, and the value of constraint
expressionshi(q̈0) are computed.

2. For each constrainti, apply an appropriate test force of known magnitudef t
i and compute the resulting joint accelerations,

q̈t
i . Using these accelerations, compute the values of each constraint expressionh j(q̈t

i ). The value ofk ji for 1≤ j ≤m
will be:

k ji =
1
f t
i
(h j(q̈t

i )−h j(q̈0)). (11)

It is worth noticing that the constraint system in equation 10 is equivalent to the canonical system of equation 1. MatrixA
corresponds to the constraint matrixK anda andb correspond toh andh0 respectively.

Using Featherstone’s algorithm, the above process computes all the elements ofK with m+1 calls toABM Accelerations()
for a total cost ofO(nm+m2). While details on how to solve the system will be given in a later section, linear system solving is
generally considered to be anO(m3) process, making the overall cost of computing themconstraint forces equal toO(nm+m3).
In practice, them3 term does not dominate the performance of this method sincem is typically a lot smaller thann. Additionally,
since them+1 calculations of accelerations are independent, they can be computed in parallel.

4.3 An Optimized Algorithm

The algorithm described in the previous section computes the elements of the constraint system matrixK by repeatedly eval-
uating the articulated body’s accelerations with different applied forces. The performance of the algorithm depends on the
efficiency of the underlying solver used to compute these accelerations. Even though Featherstone’s ABM computes the body
accelerations in linear time, repeated calls toABM Accelerations() result in unnecessary computation that can be avoided.
This section will provide an alternative algorithm derived from the original equations of motions that directly computes the net
effect of each applied force on the joint accelerations. Although the asymptotic complexity of this new algorithm is alsoO(n)
for each applied force, the constant involved is significantly smaller.

Since the constraint expressionsh(q̈) are linear functions of the joint accelerationsq̈, the following relationship is true:

h(q̈t)−h(q̈0) = h(q̈t − q̈0), (12)

for any joint acceleration vector̈qt . In other words, in order to compute the net effect of a test forceft on a given constraint it
suffices to compute the net effect of the force on the joint accelerations,dq̈t = q̈t − q̈0, and evaluate the constraint expression,
h, usingdq̈t .

A closer look at the equations inABM Accelerations() reveals which quantities are affected by the application of an
additional test forceftl on some linkl , and how the effect propagates up and down the link chains. Since the calculation is
performed at a given state of the articulated body, all the joint velocities, ˙q, and transformations,̂X , can be treated as constant.
Additionally, any quantity that depends only on the state will also remain unchanged including the link velocities,v̂, the
articulated body inertias,̂IA, and the common subexpressions,ĉ, ĥ andd. The additional forceftl will directly affect p̂v

l . The
effect will propagate via the inbound loop to the values ofp̂ andu for all the ancestors ofl . With the second outbound loop it
will spread to the accelerations ¨q andâ of all the joints and links respectively. The complete procedure can be written as:
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1 proc ABM AccelerationDeltas( l , f̂tl )
2 for i = l +1 to n
3 dp̂v

i = dp̂i = 0̂
4 dui = 0
5 (* Inbound loop *)
6 for i = l to 1
7 if (i == l)
8 dp̂v

i =−f̂tl
9 dp̂i = dp̂v

i
10 else
11 dp̂v

i = 0̂
12 dp̂i = 0̂
13 for j = 1 to numChildren(i)
14 k← index of j th child of i

15 dp̂i+= iX̂k(dp̂k +
duk
dk

ĥk)
16 dui+=−ŝ′i

dp̂i

17 (* Outbound loop *)
18 dq̈0 = 0
19 for i = 1 to n
20 j ← index of parent of linki

21 dq̈i =
dui−ĥ′i i X̂ j

dâ j
di

22 dâi = iX̂ j
dâ j + ŝi

dq̈i

In the above procedure,f̂tl is the spatial equivalent offtl expressed in the local coordinate frame of linkl , anddq̈i is the net
effect offtl on the acceleration of jointi which is equal to ¨qt

i − q̈0
i .

For joint acceleration constraints, the code has to be slightly modified to compute the net effect of a test torque on the
accelerations of all the joints. More specifically, to propagate the effects of a test torquegt

l on joint l , lines 7 through 12 are
replaced by:

dp̂v
i = dp̂i = 0̂

and:

if (i == l)
dui+= gt

l

is inserted inside the inbound loop after line 16.
The process for computing entries of the constraint matrixK presented in section 4.2 now becomes:

1. UseABM Accelerations() to compute the default accelerationsq̈0 and the values of the constraint expressionshi(q̈0).

2. For each constrainti, use an appropriate test forcef̂tl of known magnitudeft , callABM AccelerationDeltas() to obtain
dq̈t

i and compute the values of all constraint expressions,h j(dq̈t
i ). Evaluatek ji for 1≤ j ≤m as:

k ji =
1
f t
i
h j(dq̈t

i ) (13)

For a constraint system of sizem, step 2 requiresm calls toABM AccelerationDeltas(). Notice how these calls use the
values ofd andĥ computed byABM Accelerations() in step 1.
ABM AccelerationDeltas() is anO(n) algorithm since it makes two linear passes through then links of the body. There-

fore, the asymptotic complexity of the process outlined above to compute the elements ofK is still O(nm+m3). However, this
new method uses a significantly smaller number of math operations and therefore offers an important practical performance
advantage. The exact number of operations required byABM AccelerationDeltas() depends on where the linkl is in the
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joint hierarchy. Even in the worst case, wherel is a leaf link, the algorithm requires three matrix-vector multiplications, and
three vector-vector additions or subtractions per link. In comparison,ABM Accelerations() requires nine matrix-vector mul-
tiplications, two matrix-matrix multiplications and ten vector-vector additions or subtractions. Code profiling shows that one
call toABM AccelerationDeltas() is in general about three times faster than one call toABM Accelerations().

In all fairness, ifABM Accelerations() is implemented carefully, it can be optimized for them repeated calls required by
the algorithm of section 4.2. Link quantities that depend only on the state of the body can be calculated once and reused in
subsequent calls. In this case the performance advantage of the method described in this section is smaller, in the order of fifty
to sixty percent, but still significant.

5 Impact Constraints

The acceleration constraint methods discussed so far dealt with enforcing specific accelerations to various parts of the articulated
body. This section describes a different type of constraints, the impact constraints, that use impulses to instantaneously change
the body’s velocities. It turns out that the constraint solvers for acceleration constraints can be used for impacts as well. Impact
constraints deal with instantaneous changes of the articulated body velocities and work through impulse forces. During the
course of a simulation, sudden velocity changes are required when links collide with other objects or when joints reach their
limit angles. Simulating the effects of such impacts as an instantaneous change in the joint velocities of the articulated body
that happens between integration steps improves the stability of the simulation. It avoids the use of unreasonably large forces
over the course of the simulation to maintain physical consistency, which helps the integration safely proceed at a faster pace.

When solving for impact constraints, the magnitude of the impulse forces that satisfy the constraints is not itself of particular
interest. Rather, what needs to be determined is the effect of the impulse on the body velocities as it propagates across the
joints.

As an example, consider that during the course of a simulation, because of an impact, the magnitude of the velocity of a
certain pointQ on the body needs to change instantaneously from its current value,v−Q, to some known value,v+

Q. The velocity
change is the result of an impulse force acting onQ which will affect the velocities of the body, changing them fromq̇− right
before toq̇+ right after the impact. The goal is to computeq̇+ in order to update the state of the body with the new velocities
and continue with the simulation. The impulse force can be considered as a large force acting over an infinitesimally short
length of timeδ t. During that time, the magnitude of the acceleration ofQ will be:

aI
Q = (v+

Q−v−Q)/δ t. (14)

Similarly, the joint accelerations will bëqI = (q̇+− q̇−)/δ t or:

q̇+ = q̇−+ q̈I
δ t. (15)

Without loss of generality,δ t can be set to 1 and thereforeaI
Q = (v+

Q− v−Q). UsingaI
Q as the desired acceleration ofQ and

solving an acceleration constraint problem withh(q̈) = aQ(q̈)− aI
Q, the appropriate constraint force magnitudefQ that will

enforceaQ = aI
Q can be computed with the method described in section 4.1. The net effect offQ on the joint accelerations can

be computed by evaluating the default accelerations,q̈0, and the accelerations,q̈Q, after fQ is applied, and subtracting the two.
The joint velocities after the impact,q̇+, are evaluated from equation (15) usingq̈I = q̈Q− q̈0. Notice that due to way joint
velocities are computed, the result is independent of the value chosen forδ t.

This technique can be extended to simulate multiple simultaneous impacts and compute their effect on the joint velocities of
the articulated body. Given the velocity change atm impact points, a system of multiple acceleration constraints can be formed
using the values derived from equation (14) as desired accelerations. Once the corresponding constraint forces are computed,
they can be applied to the articulated body to evaluate their net effect on the joint accelerations. Using that result, the post-
impact joint velocities are computed from equation (15). Clearly, the complexity of this method is identical to the complexity
of the acceleration constraint solver and therefore the cost of resolvingm simultaneous impacts is alsoO(mn+m3).

6 Unilateral Constraints

There exists an important class of constraint problems in dynamic simulation that impose additional restrictions on the direction
of the allowable constraint force and the resulting acceleration. Contact forces between bodies are a typical source of such
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constraints. At the point of contact,P, the relative acceleration of the bodies along the contact normal should be either zero,
in which case bodies remain in contact, or positive, where bodies separate. Additionally, when the acceleration is positive the
force acting on each body has to be zero, while when the acceleration is zero the force has to be either zero or of repulsive
nature. These conditions are satisfied by aunilateral constraintthat is described by the following expressions:

aP≥ 0 , f c
P≥ 0 , andaP f c

P = 0. (16)

For rigid body simulations [Baraff 1994] presented a practical and efficient algorithm for solving the unilateral constraints
resulting from rigid body contacts using a Linear Complementarity Problem (LCP) solver.

An LCP solver takes a linear system in the familiar form,

Mz +q = w, (17)

and solves forz such that for everyi that corresponds to a unilateral constraint:zi ≥ 0, wi ≥ 0 andziwi = 0. These conditions
are often written as:

zi ≥ 0 complementary to wi ≥ 0. (18)

With appropriate bookkeeping, unilateral and bilateral constraints can be mixed in the same system of equations.
The exact same technique can be applied to unilateral articulated body constraints using the algorithms from the previous

section to compute the matrixM (our matrixK ) and vectorsz (h0) andw (h). It is worth mentioning that in articulated body
simulation another common source of unilateral constraints besides contacts is joint limits.

Algorithms that solve LCPs can be broadly classified into two categories:pivotingmethods anditerativemethods. Pivoting
methods use a finite number of steps and require the recursive solution of systems of linear equations. In contrast, iterative
methods do not terminate finitely but rather converge to the solution. Dantzig’s algorithm used in Baraff’s paper and Lemke’s
algorithm described in [Eberly 2004] and by [Hecker 2004] are common examples of pivoting methods. Pivoting methods can
be fast, but it has been our experience that for larger constraint systems they tend to suffer from round-off errors that cause them
to produce incorrect results or find no results in perfectly solvable problems.

In our simulator, we have chosen to use a Projected Gauss-Seidel iterative solver, which works admirably well. Iterative LCP
solvers come closer to a solution with every iteration, meaning that even if they are interrupted early, an intermediate result
can be good enough for the simulation to continue. In other words, to a certain extent, one can trade off speed of execution for
accuracy with these methods, which is a very valuable feature for real-time simulations. There are two additional advantages to
iterative solvers: They can gracefully deal with singular systems (which are common in simulation in the presence of friction
or contradicting user constraints), and they are very easy to implement. A complete coverage of the LCP and the associated
algorithms for solving it can be found in [Cottle et al. 1992].
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7 The simulation step

The solvers for the acceleration and the impact constraints are invoked at different stages of the simulation step. The following
procedure outlines the order of operations in a typical simulation step which advances the state of an articulated body from time
t to timet +h.

1 proc Step(qt , q̇t , C, h)
2 while (h > 0)
3 fc← ComputeConstraintForces(C)
4 q̈t ← ComputeAccelerations(qt , q̇t ,fc)
5 hTry= h ; repeat= true
6 while (repeat)
7 [ qnew, q̇new ] ← Integrate(qt , q̇t , q̈t , hTry)
8 [ C, needImpact, needBacktrack] ← UpdateConstraintSet(qnew, q̇new)
9 if (needBacktrack)
10 hTry= hTry∗0.5
11 continue
12 if (needImpact)
13 q̇new← ResolveImpacts(C)
14 h = h−hTry ; repeat= false
15 [ qt , q̇t ] ← [ qnew, q̇new ]
16 return (qt ,q̇t ,C)

Each step starts by resolving the current acceleration constraints (from the elements of constraint setC), and evaluating
the appropriate constraint forces using the algorithm in section 4. The constraint forces are supplied to the ABM algorithm
in line 4 which in turn evaluates the equations of motion and computes the joint accelerations. In line 7, an attempt is made
to take a step forward using the current state and the accelerations from line 4. After the new, tentative, state is computed,
UpdateConstraintSet() is called to update the elements ofC by adding any new constraints (such as new contacts) and
removing ones that are no longer valid. Important events like collisions need to be detected early enough to avoid interpene-
trations. If the integration step just taken was too large and objects have interpenetrated already theneedBacktrackflag is set
to signal that a smaller step must be attempted (the code above halves the stepsize but more sophisticated step prediction can
be used as well). Certain events like new collisions might require a velocity adjustment which is taken care of in line 13 using
the impact constraints described in section 5. If the last integration step was successful and no backtracking was required, the
current state is updated (line 15). The code in lines 5 to 15 is executed repeatedly until the state of the body is advanced by the
whole time intervalh. Notice that the constraint setC at the end of each step can be used as the starting constraint set for the
following step.

8 Constraint Examples

This section describes three examples of practical applications of the acceleration, impact, and unilateral constraints in the
simulation of articulated body dynamics.

8.1 Collision Response

Our simulator relies on a collision detection module that uses simple geometric primitives (boxes, spheres and capsules) directly
parented under the link transforms of the articulated body to determine whether body parts come in contact with the rest of
the environment. The collision detection results appear as a list of discrete contact point pairs. Each contact point pair has an
associated normal direction which defines the plane of contact. A relative velocity along the contact normal is defined such
that a positive sign signifies that the contact points are moving away from each other and a negative sign that they are moving
towards each other.

During each step of the simulation, the list of current contact points is updated withinUpdateConstraintSet(). Each
contact point corresponds to one or more constraint conditions in the constraint setC. Contact constraints are dealt with in two
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separate parts of the simulation step. When the relative normal velocity at a contact point is negative, theneedImpactflag is
set in order to trigger an impact constraint resolution (line 13) for all the current constraints. After impact, the relative velocity
at each contact point will either be zero (resting contact) or positive (contact points will tend to separate). In either case, an
acceleration constraint resolved byComputeConstraintForces() in line 3 will prevent interpenetration.

In the presence of friction, the force at each contact point can be broken into two components: Thenormalcomponent that
acts in a direction perpendicular to the contact plane and prevents interpenetration, and thetangentcomponent that corresponds
to the friction force which opposes any relative motion on the contact plane. The magnitude of both force components is
computed by resolving three constraint conditions. The first condition deals with the acceleration of the point along the contact
normal, and the second with the acceleration on the contact plane. The third condition prevents the ratio of the tangent force
to the normal force from exceeding the predefined friction coefficient constant. All three conditions are expressed as unilateral
constraints in the following way:

an−ad
n ≥ 0 complementary to fn≥ 0 (19)

(at −ad
t )+λ ≥ 0 complementary to ft ≥ 0 (20)

µ fn− ft ≥ 0 complementary to λ ≥ 0 (21)

In the above constraint expressions,an, at andad
n, ad

t are the actual and desired acceleration magnitudes along the contact
normal and tangent respectively,fn and ft are the magnitudes of the normal and tangent force components, andµ is the friction
coefficient. λ is an additional constraint variable that guarantees that the friction force will do its best to satisfy the tangent
acceleration condition. In other words,ft can be less thanµ fn only whenat = ad

t . The LCP solver will determine values for
fn, ft andλ , although the actual value ofλ is of no practical use.

Friction is classified asdynamicor staticdepending on whether there is sliding at the contact or not. In the case of dynamic
friction (objects are sliding), the tangent force acts in direction opposite to the direction of the relative tangent velocity. In the
case of static friction, the direction of the tangent force cannot be determined beforehand and the number of required constraint
conditions grows from three to six. To avoid such bloating of the resulting constraint system one can pick a random tangent
direction for new contacts and the last valid tangent for existing contacts that have stopped sliding. This trick works fairly well
in our experience.

When a new contact is detected, an impact constraint might be required to instantaneously change the normal velocity at
the contact point to prevent interpenetration at the next simulation step. Assuming a simple elastic collision model, the normal
velocity after the collision,v+

n , can be written in terms of the coefficient of elasticity,e, and the normal velocity before the
collision, v−n , as: v+

n = −ev−n . The three impact constraint conditions for this point will usead
n = v+

n − v−n andad
t = −v−t . As

described in section 5, impact resolution will cause an instantaneous velocity change that will set the normal velocity at this
contact point tov+

n and the tangent velocity to a value between 0 andv−t , depending on how much friction force can be applied.
For resting contact, the desired normal acceleration,ad

n is set to 0 to prevent movement along the contact normal. The friction
component of the force should attempt to cancel any relative velocity on the contact plane within the next timestep,h. If the
current tangent velocity isv−t then a desired accelerationad

t = −v−t /h will achieve just that. Of course, the friction force is
limited by the magnitude of the normal force and therefore the tangent velocity might not actually reach zero.

8.2 Joint Limits

The process of dealing with joint limits is very similar to the process outlined above for dealing with collisions. Detecting joint
limit violations is simply a matter of comparing the current joint angle against the preset limit angles. This process takes place
within UpdateConstraintSet() and results in one constraint condition added to the setC for every joint reaching a limit. A
joint velocity in a direction that violates the joint limit is neutralized using an impact constraint. Subsequently, an acceleration
constraint that sets the desired joint acceleration to zero will prevent a joint resting at a limit angle from moving against the
limit. Once again, unilateral constraints are required since the torque generated by solving the constraint system should not pull
the joint towards its limit.

8.3 Motion control

Much like humans and animals that use muscles to move their limbs, digital articulated characters have to use internal torques
to flex and extend their joints to perform a desired motion.
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A desired motion trajectory described as a series of joint angles and velocities over time is typically the output of a high-level
controller that is designed to make the articulated character perform a certain task. Acceleration constraints can be used to
derive the appropriate torques that will make joints follow that desired trajectory.

If the target angle and velocity of a joint at a particular time instant areqd andq̇d, then the following expression can be used
to compute a value of joint acceleration ¨qd necessary to move the joint towards its target:

q̈d = Kp(qd−q)+Kd(q̇d− q̇), (22)

whereq andq̇ are the current joint angle and velocity andKp andKd are two constants better known as thecontroller gains.
An expression constraint using ¨qd as the desired joint acceleration will compute the appropriate joint torque. The joint is part
of a physical system and therefore has to follow a smooth motion; it cannot jump to the target angle instantaneously. The time
it takes for the joint to reach the target and the path it follows to get there depend on the controller gains. A large value ofKp

combined with a small value ofKd will result in an underdamped motion where the joint will overshoot and oscillate about its
target. A large value ofKd will result in an overdamped motion that will delay reaching the target. For a critically damped
motion that reaches within 10% of the target angle ints time one can setKp = 1/t2

s andKd =
√

2/ts. Adjusting the values of
Kp andKd provides an interesting control knob for the user to get different looking motion behaviors from the same desired
trajectory.

While there is a similarity between equation (22) and the Proportional Derivative (PD) control equation used extensively in
the robotics and computer graphics literature, it is important to note that PD controllers affect the simulation by supplying a
torque magnitude to the character’s joint actuators. This torque will only attempt to move the joint towards its target but its
success is determined by the current state and inertial properties of the system, and any internal or external forces acting on the
joint. In contrast, acceleration constraint based controllers directly set the joint acceleration to a desired value, guaranteeing
that the joint will reach its target in a predefined manner.

9 Conclusions

As the speed of the video game hardware increases and the algorithms get refined, we will hopefully start to see character
physics playing a more prominent role in video games. There is a number of open issues that still need to be addressed
especially regarding the integration of physics algorithms with the rest of the animation system in a game engine. Another
area that needs improvement is the design of high-level dynamics controllers capable of making a character perform tasks
autonomously. Even seemingly simple tasks such as walking down a straight line are prohibitively difficult to achieve robustly
using only physics. Hopefully this work will inspire other developers to look closer into articulated body physics and help them
develop their own simulators to experiment with. The end result might be a more rapid advancement of this technology and a
more wide-spread adoption of physics based simulation in character animation.

Appendix

A Spatial notation

Spatial notation was introduced by Featherstone in [Featherstone 1987] as an elegant way to condense the equations describing
a physical system. By essentially combining linear and angular quantities, two ordinary three-dimensional vectors are replaced
by a single six-dimensional spatial vector. For example, the spatial velocity,v̂, of a rigid body is described in terms of the
body’s angular velocity,ω, and linear velocity,v, as

v̂ =
[

ω

v

]
≡ [ωTvT ]T .

Similarly, the spatial acceleration of a body can be written as

â = [αTaT ]T ,
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whereα anda are the angular and linear acceleration of the body respectively. Along the same lines, the spatial representation
of a force acting on a rigid body is

f̂ = [fT
τ

T ]T ,

wheref is the three dimensional force vector andτ the corresponding three dimensional torque vector.
The spatial analog of an ordinary transformation matrix is the 6× 6 spatial transformation matrix. IfF and G are two

coordinate frames, the spatial transformation matrix fromF to G is given by

GX̂F =
[

R 0
r×R R

]
.

In the above definition, matrixR is the 3×3 rotation matrix transforming vectors fromF to G and vectorr is the offset from
the origin ofF to the origin ofG expressed inG’s coordinates. Matrix0 is the 3×3 zero matrix andr× is the antisymmetric
matrix corresponding tor defined as:

r =

 rx

ry

rz

 , r×=

 0 −rz ry

rz 0 −rx

−ry rx 0


Note that the product of matrixr× with any vectorq is equal to the vector cross productr ×q. The transformation of a spatial
vector quantity fromF to G is accomplished by the following spatial multiplication:

p̂G = GX̂F p̂F .

Like regular transformations, spatial transformations are combined by multiplying the associated matrices:

GX̂K = GX̂F F X̂K

For efficiency purposes, spatial transformation matrices can be stored in a short form as a matrix-vector pair,spx(R, r). Using
this form, the transformation of a spatial vector is computed as:

spx(R, r) ·
[

a
b

]
=

[
Ra

r × (Ra)+Rb

]
.

Combining spatial transforms using their short form has a significant performance advantage over multiplying their correspond-
ing 6×6 matrices. Using the following property:

(Rv)×= R v×R−1,

whereR is a 3×3 orthogonal matrix, spatial transform multiplication using the short form becomes:

spx(R1, r1) ·spx(R2, r2) = spx(R1R2, r1 +R1r2).

The spatial inner product of two spatial vectorsx̂ andŷ is given byx̂′ŷ wherex̂′ is the spatial transpose ofx̂ defined as:

x̂ =
[

a
b

]
, x̂′ = [bTaT ].

Finally, the spatial cross operator,×̂, is defined by:[
a
b

]
×̂=

[
a× 0
b× a×

]
.
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B Force-Acceleration Relationship

Note: In order to prove the linear relationship between applied forces or torques and the resulting accelerations of an articulated
body, it is more convenient to manipulate the body’s dynamic equations in matrix form. Note however that the matrix form of
the equations is equivalent to Featherstone’s recursive form and therefore the results from this section apply to both.

The dynamic equations of motion of any articulated body withn DOFs can be written in matrix form as:

M(q)q̈+V(q, q̇)+G(q) = T, (23)

whereM(q) is the n×n positive definite mass matrix,V(q, q̇) is an n×1 vector of centrifugal and Coriolis terms,G(q) is an
n×1 vector of gravity terms andT an n×1 vector of generalized forces and torques acting on the body [Craig 1986]. While
each element ofM(q), V(q, q̇) andG(q) is a complex function of the state variables, at a given time instant the elements ofq
andq̇ are known and (23) can be simply written as:

Mq̈0 = F, (24)

whereF = T−V(q, q̇)−G(q) is ann×1 vector representing all the internal and external forces acting on the articulated body.
Multiplying both sides of (24) by the inverse of~M gives us a direct expression for the joint accelerations:

q̈0 = M−1F. (25)

Any additional generalized forceτ applied to the articulated body at this time instant will affect only the joint accelerations
q̈ and (25) will take the form:

q̈ = M−1(F+ τ). (26)

In practice, the two ways of applying a generalized force on the articulated body are through joint torques or external forces
acting on the links of the body. The generalized torque vector corresponding to any additional torquegi applied to jointi of the
articulated body is ann×1 vectorτ with zeros for all its elements except for elementi whose value isgi :

τ = [0. . .gi . . .0]T . (27)

An external force acting at some pointP on a link of the body can be converted from a cartesian vector,f, to a generalized force
vector,τ, using:

τ = JT
P(q)f, (28)

whereJP(q) is the 3×n Jacobian matrix corresponding toP. Although the elements of the Jacobian matrix are a complex
function of the joint anglesq, at the given time instant the Jacobian matrix forP can be considered to be a constant matrix
JP. Equations (27) and (28) demonstrate that there is a linear relationship between the elements ofτ and the magnitude of
corresponding the torque or forceτ is derived from.

Subtracting (25) from (26) provides an expression fordq̈, thenet effectof generalized forceτ on the joint accelerations:

dq̈ = q̈− q̈0 = M−1
τ. (29)

The velocity,vQ of any pointQ on a link of the articulated body can be written in terms of the Jacobian matrix,JQ(q) of Q
as:

vQ = JQ(q)q̇. (30)

Differentiating the above equation with respect to time gives us the acceleration,aQ, of Q:

aQ = J̇Q(q, q̇)q̇+JQ(q)q̈. (31)

Once again, at a given time instantJ̇Q(q, q̇)q̇ can be treated as some known constant vector,kQ, and therefore (31) can be
simply written as:

aQ = kQ +JQq̈. (32)

Using the default joint accelerations,q̈0, we compute the default acceleration ofQ, a0
Q as:

a0
Q = kQ +JQq̈0. (33)
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Subtracting (33) from (32) gives an expression foreQ, the net effect on the acceleration of pointQ:

eQ = aQ−a0
Q = JQ(q̈− q̈0). (34)

If q̈ is the vector of joint accelerations when a given force (or torque) is acting on the figure, sinceq̈− q̈0 is proportional to the
force (or torque) magnitude,eQ will also be also proportional to the force (or torque) magnitude.

To summarize the results from equations (28) and (34), any force (or torque) applied to an articulated body has a net effect
on the body’s joint and link accelerations that is proportional to the force (or torque) magnitude.
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