
Faster Math Functions
Robin Green – Sony Computer Entertainment America
robin_green@playstation.sony.com

The art and science of writing mathematical libraries has not been stationary in the past ten years. Many
Computer Science reference books that were written in the 1970’s and 1980’s are still in common use and, as
mathematics is universally true, are usually seen as the last word on the subject. In the meantime hardware has
evolved, instruction pipelines have grown in length, memory accesses are slower than ever, multiplies and square
root units are cheaper than ever before and more specialized hardware is using single precision floats. It is time to
go back to basics and review implementations of the mathematical functions that we rely on every day. With a bit
of training and insight we can optimize them for our specific game related purposes, sometimes even
outperforming general purpose hardware implementations.

Measuring Error

Before we look at implementing functions we need a standard set of tools for measuring how good our
implementation is. The obvious way to measure error is to subtract our approximation from a high accuracy
version of the same function (usually implemented as a slow and cumbersome infinite series calculation). This is
called the absolute error metric:

approxactualabs fferror −= (1)

This is a good measure of accuracy, but it tells us nothing about the importance of any error. An error of 3 is
acceptable if the function should return 38,000 but would be catastrophic if the function should return 0.008. We
will also need to graph the relative error:

0when1 ≠−= actual
actual

approx
rel f

f
f

error (2)

When reading relative error graphs, an error of zero means there is no error, the approximation is exact. With
functions like sin() and cos() where the range is ±1.0 the relative error is not that interesting, but functions
like tan() have a wider range and relative error will be an important metric of success.

Sine and Cosine

For most of the examples I shall be considering implementations of the sine and cosine functions but many of the
polynomial techniques, with a little tweaking, are applicable to other functions such as exponent, logarithm,
arctangent, etc.

Resonant Filter

When someone asks you what is the fastest way to calculate the sine and cosine of an angle, tell them you can do
it in two instructions. The method, called a resonant filter, relies on having previous results of an angle
calculation and assumes that you are taking regular steps through the series.

int N = 64;
float PI = 3.14159265;
float a = 2.0f*sin(PI*N);

float c = 1.0f;
float s = 0.0f;

for(i=0; i<N; ++i) {
 output_sine = s;
 output_cosine = c;
 c = c – s*a;
 s = s + c*a;
 ...
}

Note how the value of c used to calculate s is the newly updated version from the previous line. This formula is
also readily converted into a fixed-point version where the multiplication by a can be modeled as a shift (e.g.
multiply by 1/8 converts to a shift right by three places).

–1

–0.5

0

0.5

1

1 2 3 4 5 6 7 8

Figure 1. Resonant filter sine and cosine - 8 iterations over 3π/2

If you aim to use this technique to fill lookup tables for later use you must pay close attention to a (the step size)
and to the initial values of c and s. The technique relies on the previous value feeding back into the system, so the
initial values of s and c affect the final amplitude of the waves, e.g. starting with s=0.5 and c=0.5 gives a
peak value of 0.7. Fast though this technique is for generating sine wave like signals, you cannot rely on samples
at fractions of a cycle returning the accurate values. For example, say we were looking to take 7 steps around a
quarter of a circle:

N = 7;
a = 0.5*sin(PI*N);
...

The values for iterations 7 and 8 (counting from zero) are:

iteration sine cosine
7 1.004717676 0.158172209
8 0.9917460469 -0.0597931103
… … …
27 1.000000000 -0.000000002
Table 1. Testing the accuracy of the Resonant Filter.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

Figure 2. Resonant Filter quarter circle test, 7 iterations over π/2.

The end points of this function miss the correct values of 1.0 and 0.0 by quite large amounts (see Figure 2). If,
however, we extend the table to generate the whole cycle using 27 samples we find that the final values for s and
c are correct to 9 decimal places. Adding more iterations will reduce this error but won’t make it disappear.
Clearly this approximation is useful for generating long sequences of sine-like waves, especially over entire
cycles, but is not well suited to accurate, small angle work.

Goertzels Algorithm

A more accurate approach to the same problem is Goertzels Algorithm which uses and updates the two previous
values (i.e. it’s a second order filter). With it we can calculate a series of sine and cosine values in the series xn =
sin(a + n*b) for integer values of n:

const float cb = 2 * cos(b);
float s2 = sin(a + b);
float s1 = sin(a + 2*b);
float c2 = cos(a + b);
float c1 = cos(a + 2*b);
float s,c;

for(i=0; i<N; ++i) {
 s = cb * s1 – s2;
 c = cb * c1 – c2;
 s2 = s1;
 c2 = c1;
 s1 = s;
 c1 = c;
 output_sine = s;
 output_cosine = c;
 ...
}

The technique is only slightly more expensive to run than the previous method but has greater setup costs.
However, if the setup can be done at compile time the algorithm is still very efficient.

–1

–0.5

0

0.5

1

1 2 3 4 5 6 7 8

Figure 3: Goertzels Algorithm sine and cosine, 8 iterations over 3π/2

There are some gotchas associated with this algorithm as it is a second order filter. Because the values of s and c
are constructed from the two previous samples the algorithm actually outputs a result three iterations later than
you might expect. To compensate for this we need to initialize the sequence carefully, subtracting three steps from
the initial value a:

// step = N steps over 2*PI radians
float b = 2.0f*PI/N;
// minus three steps from origin
float a = 0.0f – 3.0f * b;
...

Adding in these alterations and putting Goertzels to the quarter circle test we find that it passes the test well,
producing more accurate results than the Resonant Filter for fractions of complete cycles:

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

Figure 4: Goertzels quarter circle test, 7 iterations over π/2

Table Based Solutions

As clock speeds rise and memory access latencies become longer and longer, sine and cosine tables have fallen
out of favor and are no longer the fastest method in all situations. New architectures that provide vector units with
closely coupled fast RAM can still give single cycle access time for small tables, so the technique must not be
discounted and will be with us for some time to come.

The idea is to precalculate a table of samples from a function at regular intervals and use the input value to the
function to hash into the table, lookup the two closest values and linearly interpolate between them. In effect we
are trading off storage space against speed.

–1

–0.5

0

0.5

1

2 4 6 8 10 12 14 16

Figure 5. Table based sine(16 samples) with and without linear interpolation.

(As an aside, in order to speed linear interpolation between samples we can precalculate the difference between
adjacent samples saving a subtract per lookup, especially on SIMD machines where a lookup usually loads a 4-
vector of floats at a time.

() [] [] []()
[]]gradient[*table

table1table*tablesin
ii

iiix
∆+≈

−+∆+≈

Precalculating these differences turns the lerp operation into a single multiply-add.)

Using a table poses the question - How many samples do we need to get N digits of accuracy? Let’s look at the
absolute error graph:

–0.015

–0.01

–0.005

0

0.005

0.01

0.015

2 4 6 8 10 12 14 16

Figure 6. Absolute error of 16 sample, linearly interpolated sine table.

The largest error (or maximal error) occurs where the curvature of the function is highest, in fact when two
samples straddle the top of the curve. The size of the maximal error where the step size is nn xxx −=∆ +1 can be
shown to be:






 ∆−=

2
cos1 xE (3)

So, for a table of 16 samples covering one whole cycle, the maximum relative error will be
() 0192147.016/cos1 =− π , giving us just under two decimal places of accuracy in the worst case. Turning the

problem around, given a known accuracy how many entries will we need in the table? We just reverse the
inequality. For example, to approximate sin(x) to 1% error we only need 23 entries:

19.22
)99.0arccos(

99.0)/cos(
%1)/cos(1
%1

≈
>
>
<−
=

π
π
π

N
N
N
E

Using a process called range reduction we can reconstruct the whole cycle from just 45° of samples meaning that
we only need a table of 23/8=3 entries. Equation 3 will give you the hard upper bound on the error, an error that
almost never occurs. For a slightly looser lower bound you can use a small angle approximation to the arccos() as
π/N should hopefully be a very small angle, giving you a bound of:

E
N

2
π= (4)

Applying Equation 4 to various error factors gives us a feel for situations where tables would be well used and
where more accurate methods must be used.

E 360° Range 45° Range
1% accurate 0.01 23 3
0.1% accurate 0.001 71 9
0.01% accurate 0.0001 223 28
1 degree 0.01745 17 3
0.1 degree 0.001745 54 7
8-bit int 2-7 26 4

16-bit int 2-15 403 51
24-bit float 10-5 703 88
32-bit float 10-7 7025 880
64-bit float 10-17 ~infinite 8.7e+8

Table 2: Size of table needed to approximate sin(x) to a given level of accuracy

Range Reduction and Reconstruction

The sine and cosine functions have an infinite domain. Every input value has a corresponding output value in the
range [0…1] and the pattern repeats every 2π units. To properly implement the sine function we need to take any
input angle and find out where inside the [0..2π] range it maps to. This process, for sine and cosine at least, is
called additive range reduction.

To do this we need to find out how many times we need to subtract 2π from the current value to reduce it to the
target range. We divide the input value by 2π, truncate the result towards zero (i.e. convert it to an integer) and
subtract that many copies of 2π from it.

const float C = 2*PI;
const float invC = 1/C;

int k = (int)(x*invC);
y = x - (float)k * C;
...

–1

–0.5

0

0.5

1

–2 2 4 6

Figure 7. Additive range reduction where C=2π/16

In this example the value of k only tells us how many full cycles we need to subtract, but if we were to range
reduce using fractions of a cycle then the lower digits of k would tell us which “quadrant” the remainder belongs
to. Why is this useful? Because of these well known relationships:

)sin()sin()cos()cos()cos(
)sin()cos()cos()sin()sin(

BABABA
BABABA

+=+
+=+

(5)

If we range reduce to []2..0 π∈y , that means we have 4 segments to our cycle and k mod 4 will tell us which
segment to use. If we multiply Equation 5 through we find that sin(B) and cos(B) collapse into the constants zero
and one, and we get four special cases:

()
()
()
())sin(2/*3sin

)cos(2/*2sin
)cos(2/*1sin
)sin(2/*0sin

yy
yy

yy
yy

−=+
−=+

=+
=+

π
π
π
π

Leading to code like:

float table_sin(float x) {
 const float CONVERT = (2.0f * TABLE_SIZE) / PI;
 const float PI_OVER_TWO = PI/2.0f;
 const float TWO_OVER_PI = 2.0f/PI;

 int k = int(x * TWO_OVER_PI);
 float y = x – float(k)*PI_OVER_TWO;
 float index = y * CONVERT;
 switch(k&3) {
 case 0: return sin_table(index);
 case 1: return sin_table(TABLE_SIZE-index);
 case 2: return -sin_table(TABLE_SIZE-index);
 default: return -sin_table(index);
 }
 return(0);
 }

Why stop at just four quadrants? To add more quadrants we need reconstruct the final result by to evaluating
Equation 5 more carefully using either inlined constants or a table of values:

...
s := sin_table(y);
c := cos_table(y);
switch(k&15) {
 case 0: return s;
 case 1: return s * 0.923880f + c * 0.382685f;
 case 2: return s * 0.707105f + c * 0.707105f;
 case 3: return s * 0.382685f + c * 0.923880f;
 case 4: return c;
 case 5: return s * -0.382685f + c * 0.923880f;
 ...
}

Note how we have had to approximate both the sine AND cosine in order to produce just the sine as a result. For
very little extra effort we can easily reconstruct the cosine at the same time and the function that returns them both
for an input angle, traditionally present in FORTRAN mathematical libraries, is usually called sincos().

You will find that most libraries use the range reduction, approximation and reconstruction phases in the design
of their mathematical functions and that this programming pattern turns up over and over again. In the next
section we will generate an optimized polynomial that replaces the table lookup and lerp.

Polynomial Approximations

People’s first introduction to approximating functions usually comes from learning about Taylor Series at high
school. Using a series of differentials we can show that the transcendental functions break down into an infinite
series of expressions – e.g.

...
!9!7!5!3

)sin(
9753

−+−+−= xxxxxx

If we had an infinite amount of time and infinite storage then this would be the last word on the subject. As we
have a very finite amount of time and even less storage, let’s start by truncating the series at the 9th power and
multiplying through (to 5 sig. digits):

975

9753

0000027557.000019841.00083333.016667.0
362880

1
5040

1
120

1
6
1)sin(

xxxxx

xxxxxx

+−+−=

+−+−≈

This is one of the classic infinite series - it exhibits alternating signs and drastically reducing factors (1/x! fairly
plummets towards zero), two signals that this series is going to converge towards the correct value fairly fast. The
problem is that for computer algorithms it’s just not fast enough. The problems lie in the approximation error. If
you graph the absolute error of this function you find that it is very accurate for small angles around the origin of
the Taylor expansion but the error increases almost exponentially away from x=0. Truncating the series later will
decrease the error but is not only is more costly and opens you to more danger of numerical error, but each
additional term is another load/multiply-accumulate in your program. We need good accuracy across the whole
range and we need it using as few terms as possible.

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

-3 -2 -1 1 2 3

Figure 8. Absolute error of Taylor series over [-π..π]

How about reducing the input range? If you reduce the range of the sine function that we’re trying to approximate
then, yes, we reduce the error because there’s less to go wrong! Along with reducing the range we could also
Taylor expand about the center of the range we want to approximate. This will halve the overall error but at the
cost of doubling the number of constants we need – now we need to calculate every power from 0 to 9, not just
every second one. Taylor series as a technique for generating fast polynomial approximations is flawed from
beginning to end.

Minimax Polynomials

The Taylor expansion has a poor maximal error. If only we could find a way to take some of this error and spread
it out across the whole range. In fact, thanks to a theory by Chebychev, it can be shown that every approximation
has one special polynomial that has an equal amount of error everywhere – where we have “minimized the
maximal error”, and it’s called the minimax polynomial. It’s characteristics are:

• For a power N approximation, the error curve will change sign N+1 times.
• The error curve will approach the maximal error N+2 times.

The method used to find these polynomial approximations is called the Remez Exchange Algorithm and it works
by generating a set of linear equations, for example:

0)sin(2 =++− nn cxbxax for a set of values []nmxn ..∈

These are solved to find the required coefficients a,b and c, the maximal error is found and fed back into nx . This
highly technical optimization problem is sensitive to floating-point accuracy and is difficult to program, so we call
on the professionals to do it for us. Numerical math packages like Mathematica and Maple have the necessary
environments with the huge number representations and numerical tools needed to give accurate answers.

The arguments needed to calculate a minimax polynomial are:

• the function to be approximated
• the range over which the approximation is to be done
• the required order of our approximation, and
• a weighting function to bias the approximation into minimizing absolute (weight=1.0) or the relative

error.

Let’s find a 7th order polynomial approximation to sin(x) over the range [0..π/4], optimized to minimize relative
error. We start by looking at the Taylor expansion of sin(x) about x=0, just to get a feel for what the polynomial
should look like. The result shows us that the series has a leading coefficient of 1.0 and uses only the odd powers:

753 980001984126.03008333333301666666670)sin(xx.+x.xx −−≈

A raw call to minimax will, by default, use all coefficients of all available powers to minimize the error leading to
some very small, odd looking coefficients and many more terms than necessary. We will transform the problem
into one of finding the polynomial +++= 2)(cxbxaxP in the expression:

)()sin(23 xPxxx +≈ (6)

First, we form the minimax inequality expressing our desire to minimize the relative error of our polynomial P:

error
x

xPxxx ≤−−
)sin(

)()sin(23

Divide through by 3x :

error

x
x

xP
xx

x

≤
−−

3

2
23

)sin(

)(1)sin(

We want the result in terms of every second power, so we substitute 2xy = :

error

y
y

yP
yy

y

≤
−−

2/3

2/3

)sin(

)(1)sin(

And so we have reduced our problem to finding a minimax polynomial approximation to:

()
yy

y 1sin
23 − with the weight function ()y

y
sin

23

In order to evaluate the function correctly in the arbitrary precision environments of Mathematica or Maple it is
necessary (ironically) to expand the first expression into a Taylor series of sufficient order to exceed our desired
accuracy, in order to prevent the specially written arbitrary accuracy sine function from being evaluated:

−+−+−+−
62270208003991680036288050401206

1 5432 yyyyy

Our last task is to transform the range we wish to try and approximate. As we have substituted 2xy = , so our
range [0..π/4] is transformed to [0..π2/16]. Running these through the minimax function looking for a second
order result gives us:

232000195152806008332160701666665460 y.y.. P(y) −+−=

Resubstituting this result back into Equation 6 gives us the final result:

753 32000195152806008332160701666665460)sin(x.x.x.x x −+−≈

In order to reconstruct these coefficients as single precision floats we need only record the first 9 significant
digits1, giving us Figure 9, the absolute and relative error curves over our range with a maximum absolute error of
2.59e-9 at x=0.785.

–3e–09

–2e–09

–1e–09

0

1e–09

2e–09

3e–09

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 9. Absolute and relative error of approximation over [0..π/4]

1 Loose proof: In single precision, numbers in the range [103..210] = [1000..1024] have 10 bits to the right of the

decimal and 14 bits to the right. There are therefore (210-103)214 = 393,216 representable values. If we use a decimal
notation with 8 digits we can represent (210-103)108 = 240,000 values. We therefore need 9 decimal digits to be able
to reconstruct the correct binary number. Similar constructions along the number line show a need for between 6 and
9 digits. For more see [Goldberg91]

Optimizing for Floating Point

The same technique we used to remove a coefficient can be used to force values to machine representable values.
Remember that values like 1/10 are not precisely representable using a finite number of binary digits. We can
adapt the technique above to force coefficients to be our choice of machine-representable floats. Remembering
that all floating point values are rational numbers, we can take the second coefficient and force it to fit in a single
precision floating point number:

0015625000073255920410.16666656
2

2796201
24 −=−=k

Now we have our constant value, let’s optimize our polynomial to incorporate it. Start by defining the form of
polynomial we want to end up with:

)()sin(253 xPxkxxx ++=

Now we form the minimax inequality:

error
x

xPkkxxx ≤−−−
)sin(

)()sin(253

Which, after dividing by x5, substituting y=x2 and solving for P(y) shows us that we have to calculate the minimax
of:

()
y
k

yy
y

+− 22/5
1sin

 with weight function ()y
y

sin

2/5

Solving this and resubstituting gives us a seventh degree optimized polynomial, over the range [0..π/4] with a
maximal error of 3.39e-8 at x=0.557, but with better single precision floating point accuracy over the range:

753
24 550001951689.0300833220800

2
2796201sin xx.x x(x) −+−≈

–2e–09

0

2e–09

4e–09

6e–09

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 10. Absolute and relative error of float optimized approximation over [0..π/4]

Evaluating Polynomials

The fast evaluation of polynomials using SIMD hardware is a lecture in itself, but there are three main methods of
generating fast sequences of operations – Horner form, Estrins Algorithm and brute force searching.

When presented with a short polynomial of the form:

y = ax2 + bx + c

Most programmers will write code that looks like this:

 y = a*x*x + b*x + c; // 3 mults, 2 adds

For the case of a small polynomial this isn’t too inefficient, but as polynomials get bigger the inefficiency of this
technique becomes painfully obvious. Take for example a 9th order approximation to sine:

 y = x + // 24 mults, 4 adds
 a*x*x*x +
 b*x*x*x*x*x +
 c*x*x*x*x*x*x*x +
 d*x*x*x*x*x*x*x*x*x ;

Clearly there has to be a better way. The answer is to convert your polynomial to Horner Form. A Horner Form
equation turns a polynomial expression into a nested set of multiplies, perfect for machine evaluation using
multiply-add instuctions:

 z = x*x;
 y = ((((z*d+c)*z+b)*z+a)*z+1)*x; // 6 mults, 4 adds

Or alternatively using four-operand MADD instructions:

 z = x*x; // 2 mults, 4 madds
 y = d;
 y = y*z + c;
 y = y*z + b;
 y = y*z + a;
 y = y*z + 1;
 y = y*x;

Horner form is the default way of evaluating polynomials in many libraries, so much so that most polynomials are
usually stored as an array of coefficients and sent of a Horner Form evaluation function whenever they need to be
evaluated at a particular input value. Problem is that many computers don’t provide 4-operand MADD
instructions, they accumulate into a register instead. Also the process is very serial with later results relying on the
output of all previous instructions. We need to parallelise the evaluation of polynomials.

Estrin’s Algorithm

Estrin’s Algorithm works by dividing the polynomial into a tree of multiply-adds and evaluating each expression
at level of the tree in parallel. The best way is to illustrate it is to build up a high power polynomial from first
principles. First, let’s break down a cubic expression into sub-expressions of the form Ax+B (NOTE: to make this
easier to extend I shall be lettering the coefficients backwards, so a is the constant term):

()
())(2

23
3

abxxcdx
abxcxdxxp
+++=

+++=

Building a table of higher and higher order polynomials shows regular patterns:

 p0(x) = a
 p1(x) = (bx+a)
 p2(x) = (c)x2+(bx+a)
 p3(x) = (dx+c)x2+(bx+a)
 p4(x) = (e)x4+((dx+c)x2+(bx+a))
 p5(x) = (fx+e)x4+((dx+c)x2+(bx+a))
 p6(x) = ((g)x2+(fx+e))x4+((dx+c)x2+(bx+a))
 p7(x) = ((hx+g)x2+(fx+e))x4+((dx+c)x2+(bx+a))
 p8(x) = (i)x8+(((hx+g)x2+(fx+e))x4+((dx+c)x2+(bx+a)))
 p9(x) = (jx+i)x8+(((hx+g)x2+(fx+e))x4+((dx+c)x2+(bx+a)))
 p10(x)= ((k)x2+(jx+i))x8+(((hx+g)x2+(fx+e))x4+((dx+c)x2+(bx+a)))
 p11(x)= ((lx+p)x2+(jx+i))x8+(((hx+g)x2+(fx+e))x4+((dx+c)x2+(bx+a)))

The idea of Estrin’s is to break the polynomial into a number of terms of the form (Ax+B) evaluate them and use
the results as coefficients for the next level of (Ax+B)s. The trick that makes this work is to keep a running total
of x2N to use as “glue” to piece together expressions in the next level N+1. For example,. the evaluation of a 7th

order polynomial using Estrin’s looks like this:

hx+g fx+e dx+c bx+a(x)2

(x2)2 (hx+g)x2+(fx+e)

x4((hx+g)x2+(fx+e)) +((dx+c)x2+(bx+a))

(dx+c)x2+(bx+b)

The terms in each row of this diagram can be evaluated in parallel and must be fully evaluated before the next row
down can be finished. For an Nth power polynomial there will be log2(N)+1 rows of expressions to evaluate.

Brute Force Searching

Estrin’s is good for cases where you will need to evaluate every power of x, but often we are evaluating every
other power. For example, in the sincos() function we need to evaluate four expressions:

)sin(*)cos(*
)sin(*)cos(*

)cos(
)sin(

2

1

642

753

xSyxCyresult
xCxxSxresult

DxCxBxAx
HxGxFxExx

+=
+=

+++≈
+++≈

How best can we use SIMD instructions to evaluate these? A naïve method would be to evaluate the powers first
and then multiply them by the constants [A,B,C,D] stored in a 4-vector and sum the results at the end. This turns
out to be far too serial with later instructions waiting for earlier ones to finish. By rearranging our constants, using

more registers and timing the pipeline intelligently, we can parallelise much of the evaluation as demonstrated by
this fragment of PS2 VU code:

coeff1 = [A, A, E, E]
coeff2 = [B, B, F, F]
coeff3 = [C, C, G, G]
coeff4 = [D, D, H, H]
in0 = [x, ?, ?, ?]
in2 = [?, ?, ?, ?]
in4 = [?, ?, ?, ?]
in6 = [?, ?, ?, ?]
out = [0, 0, 0, 0]

adda.xy, ACC, coeff1, vf0
mulax.zw, ACC, coeff1, in0
mulx.zw, coeff2, coeff2, in0
mulx.zw, coeff3, coeff3, in0
mulx.zw, coeff4, coeff4, in0
mulx.x, in2, in0, in0
mulx.x, in4, in2, in2
mulx.x, in6, in2, in4
maddax.xyzw, ACC, coeff2, in2
maddax.xyzw, ACC, coeff3, in4
maddx.xyzw, out, coeff4, in6

One way to generate rearrangements like this is to evaluate the polynomials using a program made to generate as
many trees of options as possible. For large polynomials (e.g. 22nd order polynomials needed for full double
precision arctangents) the number of possibilities is enormous but the calculation only needs a “good answer” and
can be left to cook overnight or even distribute the work across an entire office worth of computers. This
technique has been used with good results by Intel in designing their IA64 math libraries [Story00].

A Note On Convergence

How do we choose the degree of polynomial that we need to approximate a function to a given accuracy? We can
easily calculate how many bits of accuracy an approximation provides. First we calculate the maximum error
within the range (this will be a small value, typically something like 5e-4) and take the base-2 logarithm of this
value using)2ln()ln(error , giving us a negative number that tells us how many bits we will need after the
decimal point to be able to represent this value. Generating a table of this value for several important functions
shows us some interesting results (see Table 3).

2 3 4 5 6 7 8
xe 6.8 10.8 15.1 19.8 24.6 29.6 34.7

sin(x) 7.8 12.7 16.1 21.6 25.5 31.3 35.7
ln(1+x) 8.2 11.1 14.0 16.8 19.6 22.3 25.0
arctan(x) 8.7 9.8 13.2 15.5 17.2 21.2 22.3
tan(x) 4.8 6.9 8.9 10.9 12.9 14.9 16.9
arcsin(x) 3.4 4.0 4.4 4.7 4.9 5.1 5.3

x 3.9 4.4 4.8 5.2 5.4 5.6 5.8

Table 3: Number of significant bits of accuracy vs degree of minimax polynomial approximating the range [0..1].

Firstly it shows how well we can use polynomials to approximate exp(x) and sin(x) as each additional power gives
us pretty much four bits of accuracy. For a 24-bit single precision floating point value we will only need a sixth or
seventh power approximation. The table also shows how badly sqrt(x) is approximated by polynomials as each
additional power only adds half a bit of accuracy - this is why there are no quick and easy approximations to the
square root and we must use range reduction with Newtons algorithm and good initial guesses to calculate it.
Another surprise is tan(x), after all it’s only)cos()sin(xx isn’t it? Rational functions like this are not well
approximated by ordinary polynomials and require a different toolkit of techniques.

Tangent

The tangent of an angle is mathematically defined as the ratio of sine to cosine:

)cos(
)sin()tan(

x
xx =

which, when wrapped with a test for 0)cos(=x returning BIGNUM, is a good enough method for infrequent use
like setting up a camera FOV. It is however expensive as range reduction on x happens twice plus a large amount
of polynomial evaluation, even if we use sincos() to get both values we still have a division to deal with. Let’s
look into coding up a specific function for the tangent using minimax polynomials. Looking at the speed-of-
convergence table (Table 3) shows that we are going to have to use more terms than for sine or cosine, so the tan
function will be more expensive for the same level of accuracy. The question is how many more terms will we
need? That depends on how far we can reduce the input range.

Range Reduction

Thinking back to high school trigonometry, you may recall learning a set of less than enthralling trig identities.
Now we can finally see what they are for:

()θθ tan)tan(−=−

So we can make all input values positive and restore the sign at the end. We have halved our input range. The
next identity

() ()θπ
θπ

θ −=
−

= 2cot
2tan

1tan

Tells us two things – the range –π/2.. π/2 is repeated over and over again. More subtly it also tells us that there is
a sweet spot at π/4. As the tangent increases from 0 to π/4, the cotangent decreases from π/2 down to π/4 – so we
only need to approximate the range [0.. π/4] and can flip the functions as we go. Given that the range reduction is
already subtracting multiples of π/4 all we need do is, if the quadrant is odd, subtract one more π/4 from the input
range:

()
()
()
()










<≤−
<≤
<≤−
<≤

=

πθπθ
θθ
θπθ
θθ

θ

π

ππ

ππ

π

4
3

4
3

2

24

4

iff 2tan
iff cot

 iff 2cot
0 iff tan

tan

There is another school of thought that maintains that evaluating either the tangent or cotangent as a larger
polynomial over the [0.. π/2] range, allowing more parallelism in evaluating the polynomial but saving on the
serialized range reduction. There are problems with generating minimax polynomials of that size but it has been
used with success.

Polynomial Approximation

In order to form the minimax polynomial approximation to tan in the range [0.. π/2] first let’s look at the Taylor
Expansion:

() +x+x+x+xx+ x
2835
62

315
17

15
2

3
tan

9753

≈

It seems that the polynomial rises in powers of two and starts with x, leading us to use the familiar minimax form:

)()tan(23 xPxxx +≈

Following the steps for approximating sine replacing sin() for tan() we end up with the minimax inequality:

()
yy

y 1tan
23 − with weight ()y

y
tan

23

 over [0.. π2/16]

which produces polynomials like:

753 092151584011806635003349616580)tan(x.x.x.xx +++≈

With an error of 4.5e-5 over the range [0..pi/4]

–4e–05

–2e–05

2e–05

4e–05

–0.6 –0.4 –0.2 0.2 0.4 0.6

Figure 10: absolute and relative error for 7th degree tan() minimax polynomial

To find a polynomial for the cotangent, we use the same process on:

)(1)cot(2xxP
x
+≈θ

giving us the minimax inequality:

()
yy

y 1cot
− with weight ()y

y
cot

 over [ε..(π/4–ε)2] where ε = 1e-10

resulting in a polynomials like:

30242168088.033293005301)cot(xx.
x

x −−≈

with an error of 7.3e-5 over the range [0..π/4]:

–6e–05

–4e–05

–2e–05

2e–05

4e–05

6e–05

–0.6 –0.4 –0.2 0.2 0.4 0.6

Reconstruction

Putting these together into a Maple function:

fn := proc(x)
 local s,d,y,z;
 if x<=0 then
 y:=-x; s:=-1;
 else
 y:=x; s:=1;
 end if;
 d := floor(y * (4/Pi));
 y := y - d * (Pi/4);
 d := d mod 4;
 z:=0;
 if d=0 then z:=mytan(y);
 elif d=1 then z:=-mycot(y-Pi/4);
 elif d=2 then z:=-mycot(y);
 elif d=3 then z:=mytan(y-Pi/4);
 end if;
 z*s;
 end proc:

gives us an absolute and relative error plot over the entire cycle like this:

–0.0001
–8e–05
–6e–05
–4e–05
–2e–05

0

2e–05
4e–05
6e–05
8e–05

0.0001

1 2 3 4 5 6

Rational Polynomials

There is another trick up our sleeve, called Rational Polynomials (RPs). RPs are simply pairs of polynomials
where one is divided by the other, resulting in equations of the form:

)(
)()(

xQ
xPxf =

There are two main ways of producing polynomials of this form – Padé Approximants and our friend Minimax,
(as well as several hybrid systems that mix together several techniques, e.g. Chebyshev-Padé). Padé
Approximants take a central point and a desired maximum error and can be a little hit-or-miss for our explicit
ranges, so we shall concentrate on using Minimax to make our rational approximations.

To approximate the tangent, we use the form:

)(
)()tan(2

2

xQ
xxP≈θ

which expands into a minimax inequality:

()
() []16over

ytan
y

weight with
tan 2πε

y
y

Searching for a 1st over 2nd power solution and reinserting into the original form gives us:

 x. + x. .
x.x - .

42

3

011180959304938089740150707701
1102389710150707681

−

We can improve this a little by dividing through by the constant in the denominator, giving us the final answer of:

42

3

30097165938042913502201
095801019709999999860

x.x.
x.x.

+−
−

This rational approximation gives us a maximum error over the range of 1.3e-8 for many fewer operations but one
expensive divide.

Arctangent

Lookalike

Taking a look at the atan() function over the range 0..1 we find that the function really is very linear. A look at the
Taylor expansion:

+−+−+−≈−

119753
)(tan

119753
1 xxxxxxx

shows us that as x tends towards zero then atan(x) tends to x, so a reasonable first approximation would be:

xx ≈−)(tan 1

The error on the linear approximation is not so good but, by altering the slope we can improve the result quite
dramatically:

baxx +≈−)(tan 1

Solving this equation with minimax over the range [0..1] gives us:

x.+.(x) 78539816400355508730tan 1 ≈−

with a maximum error of 0.036. Not bad. How about splitting the function into a number of segments, say eight
equally spaced segments and minimaxing these to find a piecewise linear approximation? The result looks
something like this:

fn[1] = 0.0001235662 + 0.994839960 x
fn[2] = 0.004072621 + 0.964989344 x
fn[3] = 0.017899968 + 0.910336056 x
fn[4] = 0.044740546 + 0.839015512 x
fn[5] = 0.084473784 + 0.759613648 x
fn[6] = 0.134708924 + 0.679214352 x
fn[7] = 0.192103293 + 0.602631128 x
fn[8] = 0.253371504 + 0.532545304 x

The maximum absolute error looks good – around 0.00063 – but the relative error tells another story. We said that
arctan(x) tends to x as x tends to zero and users are going to expect that behavior but our approximation tends
towards 0.000124. This gives us a huge relative error compared to the size of arctan(x).

–0.002

0

0.002

0.004

0.006

0.2 0.4 0.6 0.8 1

We can solve this problem in three ways:

1. Set the first function fn[1] = x
2. Find a line that goes through zero, i.e. fn[1] = ax + 0.0
3. Live with it, we need speed not accuracy and small angles are not important.

To calculate option 2 we need generate the minimax inequality:

)()arctan(xxPn +≈θ

Which gives us:

()
() 





8
10over

arctan
eight with warctan

x
n

x
n-

x
x

We solve this for n=0.0 and P(x) = a, a constant, returning:

fn[1] = 0.9974133042 x

Plotting the three solutions side by side shows you their relative merits:

–0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.02 0.04 0.06 0.08 0.1 0.12

fn[1] = x

fn[1] = ax

fn[1] = ax+b

Selecting the new version above and reevaluating the absolute and relative error curves, we can see they are much
improved while retaining the correct small-angle behavior:

–0.002

–0.001

0

0.001

0.002

0.2 0.4 0.6 0.8 1

Exponent

Range Reduction

Range reducing for the exponent involves breaking our input value into two parts, but the form is different to the
cyclical trigonometric functions. Out input value x can be expressed as:

rNC
rNx K

+=
+= 2/)2ln(

Look familiar? It’s the same additive range reduction technique we use on sine and cosine. Expanding exp(x)
gives us:

r
N

ex K22)exp(=

So all we have to find is an integer power of 2 for N and exp(r), where r has the range ±ln(2)/2K+1. In traditional
algorithms we use K=1, but there are semi-table based solutions for range reduction of the power of two where K
is higher, but with K=1 the power of 2 is usually handled by scaling the exponent of the IEEE floating point
representation. All that remains is the minimax polynomial.

For small, known input ranges (i.e. advanced shaders) we can tabulate our small range of powers of two from N.

Polynomial Approximation

Looking at the Taylor expansion of exp(x), it has the form:

++=
7201202462

1)exp(
65432 x+x+x+x+xx+x

It looks like we want to remove the constant 1.0 and produce a polynomial approximation of the form:

)(1)exp(2 xPxxx +≈−

giving us a minimax expression:

xxx
ex 11

22 −− with weight xe
x2

 over the range
()







2
2ln..0

This returns polynomials with an absolute error of 1.9e-5 like:

32 190809553049687922401)exp(x.x.xx ++=−

Reconstruction

The reconstruction is a simple matter of multiplying together the power of 2 and the result of the polynomial.

P := x->x+.496879224*x^2+.190809553*x^3;

myexp := proc(x)
local N,y,K,C,invC;
K := 1;
C := 2^K/ln(2);
invC := ln(2)/2^K;
N := floor(x * C);

y := x-N*invC;
2^(N/2^K) * (P(y)+1);
end proc:

This algorithm gives a very uninteresting relative error plot, so we’ll skip it…

Conclusion

The task of writing low accuracy mathematical functions using high accuracy techniques has not been covered in
any depth in the literature, but with the widespread use of programmable DSPs, vector units, high speed yet
limited hardware and more esoteric shading models, the need to write your own mathematical functions is
increasingly important.

Introductions to polynomial approximation always start by saying how accurate they can be, and this obsession
with accuracy continues through to extracting the very last bit of accuracy out of every floating point number. But
why? Because if you can build high accuracy polynomials with less coefficients, you can also build tiny, low
accuracy approximations using the same techniques. The levels of accuracy you can obtain with just two
constants and range reduction can be amazing. Hopefully this article has given you the confidence to grab a math
package and generate some of your own high speed functions.

References

[Cody80] Cody & Waite, Software Manual for the Elementary Functions, Prentice Hall, 1980
[Crenshaw00] Crenshaw, Jack W, Math Toolkit for Real-Time Programming, CMP Books, 2000
[DSP] The Music DSP Source Code Archive online at http://www.smartelectronix.com/musicdsp/main.php
[Goldberg91] Goldberg, Steve, What Every Computer Scientist Should Know About Floating Point Arithmetic,

ACM Computing Surveys, Vol.23, No.1, March, 1991 available online from
http://grouper.ieee.org/groups/754/

[Hart68] Hart, J.F., Computer Approximations, John Wiley & Sons, 1968
[Moshier89] Moshier, Stephen L., Methods and Programs for Mathematical Functions, Prentice-Hall, 1989
[Muller97] Muller, J.M., Elementary Functions: Algorithms and Implementations, Birkhaüser, 1997
[Ng92] Ng, K.C., Argument Reduction for Huge Arguments: Good to the Last Bit, SunPro Report, July 1992
[Story00] Story, S and Tang, P.T.P, New Algorithms for Improved Transcendental Functions on IA-64, Intel

Report, 2000
[Tang89] Tang, Ping Tak Peter, Table Driven Implementation of the Exponential Function in IEEE Floating Point

Arithmetic, ACM Transactions on Mathematical Software, Vol.15, No.2, June, 1989
[Tang90] Tang, Ping Tak Peter, Table Driven Implementation of the Logarithm Function in IEEE Floating Point

Arithmetic, ACM Transactions on Mathematical Software, Vol.16, No.2, December, 1990
[Tang91] Tang, Ping Tak Peter, Table Lookup Algorithms for Elementary Functions and Their Error Analysis,

Proceedings of 10th Symposium on Computer Arithmetic, 1991
[Upstill90] Upstill, S., The Renderman Companion, Addison Wesley, 1990

	Faster Math Functions

