
Crowd Simulation on PS3

Craig Reynolds

Game Developers Conference 2006

Crowds and
Other Group Motions

■ Pedestrians, urban crowds

■ Armies

■ Vehicle traffic

■ Animal groups: flocks, herds and schools

Crowd Simulation
on PLAYSTATION®3

■ Goal:

■ Simulate large groups of autonomous characters

■ Requirements:

■ Real time: 60 frames per second

■ High performance: thousands of individuals

■ Take advantage of PS3’s Cell architecture

PSCrowd

■ Developed for PS3’s multiprocessor Cell architecture

■ Makes use of PPU, multiple SPUs and RSX GPU

■ High performance:

■ Up to 10,000 simple characters at 60 fps

■Will be provided to developers as SDK sample code

■ Library

■ Demos

This presentation:
related topics

boids

steering
behaviors

interacting
particle systems

This presentation:
not about steering

boids

steering
behaviors

interacting
particle systems

on PS3

PSCrowd: High Concept

■ Subdivide space for fast proximity query

■ Use same subdivision as basis of parallel execution

Keynote demo

Chameleon fish demo

Queue crowd/obstacle/goals

Overview of PS3 Architecture

■ 3.2 GHz clock speed

■ 256 Mbyte XDR system memory

■ 25.6 Gbyte/sec peak DMA rate

■ Power Processor Unit (PPU) -- PowerPC CPU

■ Synergistic Processor Unit (SPU)

■ 6 SPUs available to application

■ 256 Kbyte memory

■ RSX GPU

PS3 block diagram

PS3: space and speed

fast SPUsreally fast DMA
(XDR, MIC, EIB)

big XDR small local store on SPUs

PSCrowd: Basic Concepts

■ Keeps track of all individuals in the crowd

■ Sorted by position into “Buckets”

■ Provides efficient access to neighbors

■ Update crowd simulation using multiple SPUs

■ Allows arbitrary behavioral model

■ Each SPU updates one Bucket (6X parallelism)

■ DMAs instance data to RSX GPU

PSCrowd Software Substrate

■ PS3 SDK (libraries, tool chain, app Framework)

■ PSGL graphics, based on OpenGL ES

■ Cg for shaders and instancing on RSX

■ OpenSteer: steering behaviors and utilities

Crowd Simulation as
Interacting Particle Systems

■ Crowd simulation can be based on a particle system

■ In a traditional particle system each particle has
behavior and may interact with its environment

■ A “crowd particle” also interacts with its neighbors

■ Profound impact on performance:

■ Traditional particle system: O(n)

■ Interacting particle system: O(n2)

■ Large crowd populations are prohibitively expensive

■We need a fast technique for finding neighbors

Accelerating Interacting Particle Systems

■ Finite support -- behaviors based on local perception

■ Spatial hashing

■ Parallel execution of update computations

Accelerating Interacting Particle Systems

Finite support
(local perception) Spatial hashing Parallel update

Spherical Neighborhood
Within 3D Lattice

Using Spatial Subdivision to
Accelerate Crowd Simulation

■ Pre-sort individuals by positions

■ Break up space into smaller regions (area, volume)

■ Associate individuals with these local regions

■ Find neighbors more quickly by local search

■ History: listed as future work in 1987 boids paper,
PS2 implementation described in 2000 PIP paper

■With multiple processors:

■ Regions are disjoint, so update them in parallel

■ Boundary conditions for perception distance

19
87

19
90

19
95

20
00

20
01

20
02

20
03

20
04

20
05

20
06

1 1 1
300 300 300 300

1,500 1,500

3,000

10,000

150

PSCrowd

Interacting Particle Systems:
Performance Timeline

80 boids at 30 fps,
~1 MHz CPU:
1 hour to simulate
1 sec of flocking

Progress in PSCrowd Performance
M

ar
 0

5

A
pr

 0
5

M
ay

 0
5

Ju
n

05

Ju
l 0

5

A
ug

 0
5

S
ep

t 0
5

O
ct

 0
5

N
ov

 0
5

D
ec

 0
5

Ja
n

06

F
eb

 0
6

M
ar

 0
6

10,000

5000

3000

1000
150

In
di

vi
du

al
s

at
 6

0
fp

s

7000

PSCrowd C++ Library Components

■ Individual

■ Container classes (templates of a class based on Individual)

■ Bucket

■ Lattice

■ NearestN

■ BucketUpdateParameters (BUP)

Individual class

■ Represents one member of a crowd

■ Base class for application-specific individuals

■ Implements:

■ Basic per-agent, per-frame update

■ Various per-crowd utilities as static class functions

Individual class

position

local x

local y

local z

speed

radius

etc...

Bucket class

■ Template based on class derived from Individual

■ Corresponds to an axis-aligned box of 3D space

■ Collection of Individuals in that box (fixed max size)

■ Rebucket:

■ Once per frame (on PPU)

■ Reassign individuals who cross Bucket boundaries

■ Constant time add/delete operations.

Bucket class

array of
Individual(s)

header

fill pointer

}DMA this
portion

Lattice class

■ Template based on class derived from Individual

■ 3D array of identical Buckets

■ Contain master copies of all Individuals

Lattice

array of
Bucket (s)

header

*...

...

SPU Bucket update

DMA to SPU:

 BUP (poll until ready)

 Bucket to be updated

 26 “Condensed Buckets”

Update center Bucket

 refer to surrounding CBs

DMA instance data to RSX

DMA updated Bucket to PPU3x3x3 Bucket neighborhood

NearestN

■ aka: “K nearest neighbors”

■ defined by: a position, max radius and N

■ applied to all Individuals within intersecting Buckets

■ builds an ordered collection of the N nearest
neighbors within given sphere

NearestN

5 nearest
neighbors

max radius

Individual
to update

current
bounding
radius

Neighborhood Refinement

angle
restriction

NearestN
restriction

radius
restriction

Bucket
restriction

full
population

Demonstrations

■ 3 PSCrowd demos -- distributed with the software

■ Demo made for Phil Harrison’s GDC 2006 Keynote

PSCrowd Demonstrations

■ 60 fps on prototype PS3 (CEB-2050, 3.2 GHz)

■ Simple 36 triangle model, vertex animation

■ 3D schooling: 7000 fish

■ Chameleon fish: flock coloring behavior

■ Fish species: prefer to school with their own kind

■ 2D crowd: 10,000 individuals

Keynote Demonstration

■ 5000 fish

■ 30 fps

■ 2 species

■ art assets

■ textures and models: fish (3 LOD), rocks, ducks...

■ procedural water

■ underwater shaders, moving surface

■ COLLADA-based art path

■ digital content creation tools → PSGL graphics

Demonstrations

Behavioral Components

■ Boids flocking behavior

■ Separation

■ Alignment

■ Cohesion

■ Flock coloring

■ Obstacle avoidance

■ Anti-Head-on

■ Leader wander

■ Anti-Bucket-crowding

Behavioral Update Rate (skipThink)

■ 60 fps update for physics, animation and graphics

■ Slower rate for behavioral updates

■ “on 8s” (7.5 fps) for 7000 Individuals.

■ On each frame:

■ 1/8 of Individuals think

■ 7/8 of Individuals skipThink and apply same
steering force computed on the last think.

■ “on 10s” (6 fps) for 10,000 Individuals

skipThink

think each frame:

skipThink on 4s:

Overall System Utilization
(“chameleon fish” demo)

RSX draw
15%

ignore
85%

70%

SPE busy
30%

rebucket
8%

DMA
1%

idle
16%

update
48%

condense Buckets
27%

PPU

Future Performance:
Stewart’s Number

■ About 15 months ago my colleague Stewart Sargison
predicted that I should be able to handle crowds of
16,000 individuals at 60 fps.

■ PSCrowd can handle 10,000 today.

■ Faster in the future?

■ SPU idle more than half of each frame.

■ PPU spends about half its time spoon-feeding the
SPUs new Bucket assignments.

Ideas That Did Not Work

■ skipThink per Bucket

■ skip thinks in sync on all of a Bucket’s Individuals

■ mostly intended to avoid DMA

■ but DMA is so fast there was little benefit

■ problem: increased granularity of Bucket updates

■ Start biggest Bucket first

■ small overhead: incremental sort of buckets by size

■ better to reduce time for all Bucket updates

Limitations and Future Work

■ Large memory footprint on PPU (sparse, roughly 50X)

■ Solve by repartitioning dense Lattice into new
adaptively sized Buckets for each frame?

■ Bucket size and robustness:

■ Must be small to store 27 (3x3x3) on SPU

■ Fixed size (especially if small) invites overflow

■ Solve with streaming of arbitrary size Buckets?

■Weak unaligned collision avoidance

■ No physical or kinematic non-penetration constraint

■ Other kinds of spatial hashing: nav mesh, KD tree

Future Work: Repartition Dense Lattice

■ Large memory footprint on PPU (sparse, roughly 50X)

■ Solve by repartitioning dense Lattice into new
adaptively sized Buckets for each frame?

B
uc

ke
t 0

B
uc

ke
t 0

B
uc

ke
t 1

B
uc

ke
t 1

B
uc

ke
t 2

B
uc

ke
t 2

B
uc

ke
t 3

B
uc

ke
t 3

...

...

Future Work: Streaming Buckets

■ Bucket size and robustness:

■ Solve with streaming of arbitrary size Buckets?

SPU code

26
Condensed

Buckets

Bucket
to update

Lattice
on PPU

other
Bucket

Bucket
to update

NearestN(s)

SPU code
current
SPU layout

streaming
SPU layout

Acknowledgments

■ Sponsored by Sony Computer Entertainment

■ Supported by many colleagues in Japan, Europe and
here in California

■ Particularly my US R&D coworkers: Gabor Nagy,
Care Michaud-Wideman, Roy Hashimoto, Axel
Mamode, Steven Osman, Stewart Sargison, Tanya
Scovill, Trevor Smigiel, Chengdong Li, Greg Corson
and Nicholas Szeto

■ My boss, Director of US R&D: Dominic Mallinson

Thank you!

contacts:
http://www.research.scea.com

craig_reynolds@playstation.sony.com

