
Introduction to the
Performance Analyzer
For PlayStation®2

Kirk Bender & Geoff Audy
Developer Support Engineers
Sony Computer Entertainment America

Agenda

� Overview
� Tour of Features
� Demonstration
� Optimization Example
� Case Studies
� Packet Viewer

The Performance Analyzer

� Hardware: captures a snapshot of PS2
processors, bus activity
� Development Tool + internal capture hardware
� Samples at main bus clock- 150mhz
� Three 256MB ring buffers
� Up to 11 frames @ 60Hz

� Software: captures & displays the data
� Shows how the PS2 is being utilized

� Indispensable tool for optimization
� non-intrusive
� Visualize and quantify efficiency

Performance
Analyzer

� PS2 board
� Single board Linux PC
� Capture board
� Host PC

Linux PC

PS
2

bo
ar

d

ca
pt

ur
e

bo
ar

d

PA System

Host PC

network

How to Use
� Set the game to scene of interest
� Boot from disc or run from host

� Set Trigger -many types available:
� Manually, on GS register read/write, vblank,

breakpoint, foot switch, or within code

� Start Capture
� Data captured in ring buffers until trigger

� Transfer data to PC
� About 24 MB/frame

� View captures on Windows or Linux
� Graphs, statistics, etc.

PS2 Architecture Review

I$
16KB

MIPS RISC
CORE

IPU

D$
8KB

SPR
16KB

GIF
Inst.
MEM

Data
MEM

Inst.
MEM

Data
MEM

Vector Unit
VU1

Vector Unit
VU0

Main Bus

Emotion Engine (EE)

DMAC MEMIF SIF

GS

TV

Main Memory
CD, sound, net,
controllers,
mem cards

IOP

PA Software

� Using graphics & statistics, shows:
� EE core pipeline
� DMA: EE cache misses, DMA channels
� VUs: Micro mode run, XGKICK blocking
� GIF texture transfers, primitive packets
� GS DDA: Pixels, primitives, texturing
� GS VRAM: Host-local, page misses
� IOP: I-cache misses, DMA, interrupts

What the PA Can Do

� Separates processes into their parts
� Shows how busy the hardware is
� Shows bottlenecks
� Shows parallelism or lack thereof
� Gives facts and figures

What the PA Can�t Do

� Monitor realtime
� Capture program counter

Not a profiler: use SN Systems, Metrowerks, your own

� Capture actual DMA data
� Capture actual VRAM
� But can capture and display GIF packets
� User can add VRAM dump to trigger code

� Interpret
� You have to do the analysis and interpretation
� Need to know your goals and your code

Typical Capture

what does it mean...??

Graph: EE, DMA, VU
frame start

VU1 waiting for XGKICK to finish (blocked by GS)

1/60 sec.polling for
vsync EE

coreI cache
miss

Main
Bus
DMA

D cache
miss

DMA to VU1

path 1 to GIF GIF

no VU0
micromode VU0

VU1
VU1 run Block

Graph: GS Status

of
triangles

of pixels

scissoring
setup/xfer

texture or
page miss

DDA running DDA idle

Graph: GS Mem. 1/60 sec.

memory page misses

memory reads

memory writes

texture buffer misses

host-local transfers

pixels written

palettized textures

reads to SRAM buffer

vblanks

Graph: IOP

CD, SPU, net, xfers

I cache misses

mem. loads/stores

SPU interrupts

vblanks

hblanks

Statistics

� Use the markers
� Get a total of polygons, etc. in low-

performance sections

� DMA statistics:
� Occupation: total time it occupies the bus
� Send: time actually sending the data
� Occupation time >= Send time

� What are �good� numbers?
� Depends

Statistics: DMA

send is 35% of occupation

Statistics: GS

2.14M polys/s:
not bad,
but could

do a lot more

TPC
� Target Program Counter
� Relates graph, waveform to your code
� Captures exceptions and jump targets

� Shows symbols for JALR jumps
� compiler option -mlong-calls forces JALR

� Load executable to show symbols
� Use unstripped .elf with symbols

� See which functions cause I$ misses
� Combine functions or relocate

TPC (cont.)
Time TPC Trace Address Symbol

------------- --------- ------------ --------- ------------

00000000 marker <A>

00000012 E52234000 Jump A 10C894 VSync +0x64

00000023 EB4304000 Jump A 100D2C sceGsSyncV + 0x2C

00000073 B8E0 Jump B ???3A0

00000077 B8230400 Jump B ???100CA0 sceGsSwapDBuff +0x00

00000085 B57404000 Jump B 1011D4 sceGsPutDispEnv +0x14

00000100 E23304000 Jump A 100CC8 sceGsSwapDBuff +0x28

00000292 BA3 Jump B ???E8

00000295 E1 Jump A ???4

00000297 B41104000 Jump B 100450 killtime +0x00

00000317 E6F Jump A ???3D8

00000320 E41104000 Jump A 100450 killtime +0x00

Demonstration

Using the PA: Goals

� Increase the frame rate
� Increase content for a given frame rate
� Refine engine designs
� Choose a design, implement, optimize

� Fix bugs
� Set trigger near hang point

Using the PA: Bottlenecks

� Prioritize: Is game EE or GS bound ?
� Most games we�ve seen are EE bound
� EE bottleneck can be memory bottleneck:

use cache and scratchpad effectively

� Reduce processing for unseen polygons
� Increase parallelism among core, VUs

Example: 20fps Game

doh!

heavily EE bound,
optimize EE first!

polling
1/60 sec.

Core

DMA

GIF

VU

frame start 1/30 sec. 1/20 sec.

cache
misses

Example: Fluid Simulation

� Calculate & render fluid
� 100 x 100 float height matrix

� Original: physics in EE core
� Heavy data cache misses

� Optimizations:
� 1: transpose height matrix in SPR
� 2: memcpy using DMA via SPR
� 3: calculate surface normals in SPR
� 4: inline VU0 macros on SPR

Example: Fluid Simulation (cont.)

doh!

1/30 sec

Core Original
data cache misses

Core

DMAVU1 DMA for vertices

Optimized Version 1
transpose on SPR DMA

Optimized Version 4
memcpy via SPR

DMA

Core

normals on VU0, SPR

Using the PA: Tips

� Put markers in code to show in graph
� e.g. VU0 micro mode

� printfs cause cache misses
� Save region of interest to a smaller file
� Detect frame rate drop and trigger in code
� Write code to capture VRAM to a file at

trigger point (or use packet viewer)

Part 2:

Case Studies
and

Packet Viewer

A Triangle Going Through
Code On EE (CPU)

Triangle through DMA ch. 1

Triangle through PATH1

VU1 XGKick�ing

Primitive counter (1 tri)

Tri pixels generation
VRAM page misses

Memory read (Z buffer)
Memory write (draw buffer)

Pixel write
Non-textured tri

A Sub-Optimal Example
EE (CPU)

Main bus

GIF paths

Workload
Very

unbalanced

VU activity

GS-related
rows

A Sub-Optimal Example (cont.)

VU1 Run

GIF receiving
data

PATH1
utilization

is poor!

DMA transfer
is VU1-bound

Main BUS

A Sub-Optimal Example (cont.)

A Sub-Optimal Example (cont.)

Main BUS

GIF

VU1 run
VU1 block

VU1 is starved by
PATH2 texture

transfers

A Sub-Optimal Example (cont.)

Palettized-
textures
not used

CLUT reads

A Sub-Optimal Example (cont.)

� ~10000 primitives / frame (300k/s)
� ~230k GS page misses / frame
� Average 23 page misses / primitive
� ~700k GS mem reads, ~800k GS mem

writes

� Typical of low-polycount games using
big triangles to make up for the
quantity

So What Can Be Done?
� Use PS2 preformatted data = Leave the CPU

for game processing (ai, physics)
� Use strips
� Use specialized VU1 code for each case
� Use VU0 in micro-mode, and transfer data

out to scratchpad
� Use 4- and 8-bit textures whenever possible
� Bottom line: Need to use parallelism as

much as possible (PS2�s strength!)

An Optimal Example
EE (CPU)

Main bus

Workload
balanced

GIF paths

VU activity

GS-related
rows

An Optimal Example (cont.)

VU1 Run

GIF receiving
data

DMA transfer
is VU1-bound

PATH1
utilization is
very good in
most cases�

�when it�s not held back by
PATH2 texture transfer

Main BUS

An Optimal Example (cont.)

CLUT reads

VU1 starvation is
diminished by using
palettized textures

An Optimal Example (cont.)

� ~120000 primitives / frame (7.2M / s)
� ~190k GS page misses / frame
� Average of 1.58 page misses /

primitive
� ~720k GS mem reads, ~650k GS mem

writes

� Typical of high-polycount games using
small triangles

So What Have They Done
Right?

� Tailored their data for PS2 at tool time
� Ready for VIF compression (possibly!)
� Smaller and denser geometry (better for GS)

� Made good use of VU0 and scratchpad
� Wrote efficient and specialized VU1 code
� To avoid being EE-bound: Transferred

workload to other processors (VU0 &
VU1)
� Balance, balance, balance

A Side-By-Side Comparison

A Suggestion If You�re EE-
Bound: Dump work on VU1!
� Contrary to usual saying, but�
� Send minimal data set
� Have VU1 generate the rest
� Must be creative (must be for

rendering)
� Particle system?
� Building generation?
� Crowd generation, for stadium-based

games
� Older ideas, like NURBS

A Suggestion If You�re EE-
Bound: Dump work on VU1!(cont.)

Minimal
data set

DMA�d

Multiple
output to

the GIF
and GS

Main BUS

GIF
receiving
data

VU0/VU1
activity

Nbr prim.

What You Ideally Want To Get

� Over 10M polygons per second, in-game

� More than 50% CPU usage

� More than 80% dual-issue

GIF Packet Viewer (OpenGL)
� We know exactly what went through

the GIF (GS register settings)
� We�re able to rebuild a scene drawn

or any part of it, closely simulating
the GS
� The cool part: We�re able to get more

out of it than simply redrawing the
scene!

A Look at a PA Snapshot

Example 1: Normal Mode

Example 2: Wire Frame Mode

Example 3: Overdraw Mode

Example 4: Bracketing VU0 Activity

Example 5: Main Character

Example 6: Texel-to-Pixel
Ratio Mode

Much More is Possible!

� Drawing order
� Primitive size
� Number of page misses generated
� Number of texture read generated
� 3D view of a scene
� Etc�

GIF Packet Viewer (PS2 GS)

� Sends captured GIF data to an actual
tool�s GS via DECI2
� Exactly recreates rendering, assuming

texture uploads were dynamic
� Support textures (unlike the OpenGL

one)
� Drawing may be done in slow motion

How to get a hold of a PA

� MUST be a licensed PlayStation®2
developer!

� Contact SCEA/SCEE/SCEI developer
support group

� Price and availability: TBA!

Conclusion
� PlayStation®2 Performance Analyzer

is useful at every stage of
development
� But use it as early as possible!
� Starting as early as engine design stage

� It helps you make full use of the
hardware
� Make an appointment or send in a disc
� Form on the developer support website
� Sessions at SCEA office, PS2 DevCon and

GDC

Questions?

� By email
� geoff_audy@playstation.sony.com
� kirk_bender@playstation.sony.com

� Pass by our booth and talk to us!
� �The big Sony booth�

� This presentation available at:
� http://research.scea.com

	INTRODUCTION TO THE PERFORMANCE ANALYZER FOR PLAYSTATION®2
	Game Developers Conference, March 2003
	Agenda
	The Performance Analyzer
	PA System
	How to Use
	PS2 Architecture Review
	PA Software
	What the PA Can Do
	What the PA Can’t Do
	Typical Capture
	Graph: EE, DMA, VU
	Graph: GS Status
	Graph: GS Mem.
	Graph: IOP
	Statistics
	Statistics: DMA
	Statistics: GS
	TPC
	TPC (cont.)
	Demonstration
	Using the PA: Goals
	Using the PA: Bottlenecks
	Example: 20fps Game
	Example: Fluid Simulation
	Example: Fluid Simulation (cont.)
	Using the PA: Tips
	Part 2: Case Studies and Packet Viewer
	A Triangle Going Through
	A Sub-Optimal Example
	A Sub-Optimal Example (cont.1)
	A Sub-Optimal Example (cont.2)
	A Sub-Optimal Example (cont.3)
	A Sub-Optimal Example (cont.4)
	A Sub-Optimal Example (cont.5)
	So What Can Be Done?
	An Optimal Example
	An Optimal Example (cont.1)
	An Optimal Example (cont.2)
	An Optimal Example (cont.3)
	So What Have They Done Right?
	A Side-By-Side Comparison
	A Suggestion If You’re EE-Bound: Dump work on VU1!
	A Suggestion If You’re EE-Bound: Dump work on VU1!(cont.)
	What You Ideally Want To Get
	GIF Packet Viewer (OpenGL)
	A Look at a PA Snapshot
	Example 1: Normal Mode
	Example 2: Wire Frame Mode
	Example 3: Overdraw Mode
	Example 4: Bracketing VU0 Activity
	Example 5: Main Character
	Example 6: Texel-to-Pixel Ratio Mode
	Much More is Possible!
	GIF Packet Viewer (PS2 GS)
	How to get a hold of a PA
	Conclusion
	Questions?

