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Agenda

� Overview
� Tour of Features 
� Demonstration
� Optimization Example
� Case Studies
� Packet Viewer



The Performance Analyzer

� Hardware: captures a snapshot of PS2 
processors, bus activity
� Development Tool + internal capture hardware
� Samples at main bus clock- 150mhz
� Three 256MB ring buffers
� Up to 11 frames @ 60Hz

� Software: captures & displays the data
� Shows how the PS2 is being utilized

� Indispensable tool for optimization
� non-intrusive
� Visualize and quantify efficiency
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How to Use
� Set the game to scene of interest
� Boot from disc or run from host

� Set Trigger   -many types available:
� Manually, on GS register read/write, vblank, 

breakpoint, foot switch, or within code

� Start Capture
� Data captured in ring buffers until trigger

� Transfer data to PC
� About 24 MB/frame

� View captures on Windows or Linux
� Graphs, statistics, etc.



PS2 Architecture Review
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PA Software

� Using graphics & statistics, shows:
� EE core pipeline
� DMA: EE cache misses, DMA channels
� VUs: Micro mode run, XGKICK blocking
� GIF texture transfers, primitive packets
� GS DDA: Pixels, primitives, texturing
� GS VRAM: Host-local, page misses
� IOP:  I-cache misses, DMA, interrupts



What the PA Can Do

� Separates processes into their parts
� Shows how busy the hardware is
� Shows bottlenecks
� Shows parallelism or lack thereof
� Gives facts and figures



What the PA Can�t Do

� Monitor realtime
� Capture program counter

Not a profiler: use SN Systems, Metrowerks, your own

� Capture actual DMA data
� Capture actual VRAM 
� But can capture and display GIF packets
� User can add VRAM dump to trigger code

� Interpret
� You have to do the analysis and interpretation
� Need to know your goals and your code



Typical Capture

what does it mean...??
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Graph: GS Status
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Graph: GS Mem.  1/60 sec.
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Graph: IOP 
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Statistics

� Use the markers
� Get a total of polygons, etc. in low-

performance sections

� DMA statistics:
� Occupation: total time it occupies the bus
� Send: time actually sending the data
� Occupation time >= Send time

� What are �good� numbers?
� Depends



Statistics: DMA

send is 35% of occupation



Statistics: GS

2.14M polys/s:
not bad,
but could

do a lot more



TPC
� Target Program Counter
� Relates graph, waveform to your code
� Captures exceptions and jump targets

� Shows symbols for JALR jumps
� compiler option -mlong-calls  forces JALR

� Load executable to show symbols
� Use unstripped .elf with symbols

� See which functions cause I$ misses
� Combine functions or relocate



TPC (cont.)
Time          TPC       Trace          Address Symbol      

------------- --------- ------------ --------- ------------

00000000                marker <A>                         

00000012      E52234000 Jump A          10C894 VSync +0x64

00000023      EB4304000 Jump A          100D2C sceGsSyncV + 0x2C

00000073      B8E0      Jump B          ???3A0             

00000077      B8230400  Jump B       ???100CA0 sceGsSwapDBuff +0x00

00000085      B57404000 Jump B          1011D4 sceGsPutDispEnv +0x14

00000100      E23304000 Jump A          100CC8 sceGsSwapDBuff +0x28

00000292      BA3       Jump B           ???E8             

00000295      E1        Jump A            ???4             

00000297      B41104000 Jump B          100450 killtime +0x00

00000317      E6F       Jump A          ???3D8             

00000320      E41104000 Jump A          100450 killtime +0x00



Demonstration



Using the PA: Goals

� Increase the frame rate
� Increase content for a given frame rate
� Refine engine designs
� Choose a design, implement, optimize

� Fix bugs
� Set trigger near hang point



Using the PA: Bottlenecks

� Prioritize: Is game EE or GS bound ?
� Most games we�ve seen are EE bound
� EE bottleneck can be memory bottleneck:        

use cache and scratchpad effectively

� Reduce processing for unseen polygons
� Increase parallelism among core, VUs



Example: 20fps Game
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Example: Fluid Simulation

� Calculate & render fluid 
� 100 x 100 float height matrix

� Original:  physics in EE core
� Heavy data cache misses

� Optimizations:
� 1: transpose height matrix in SPR
� 2: memcpy using DMA via SPR
� 3: calculate surface normals in SPR  
� 4: inline VU0 macros on SPR 



Example: Fluid Simulation (cont.)
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Using the PA: Tips

� Put markers in code to show in graph 
� e.g. VU0 micro mode

� printfs cause cache misses
� Save region of interest to a smaller file 
� Detect frame rate drop and trigger in code
� Write code to capture VRAM to a file at 

trigger point  (or use packet viewer)



Part 2:

Case Studies
and

Packet Viewer



A Triangle Going Through
Code On EE (CPU)

Triangle through DMA ch. 1

Triangle through PATH1
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Tri pixels generation
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Memory read (Z buffer)
Memory write (draw buffer)

Pixel write
Non-textured tri



A Sub-Optimal Example
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A Sub-Optimal Example (cont.)
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A Sub-Optimal Example (cont.)



A Sub-Optimal Example (cont.)
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A Sub-Optimal Example (cont.)
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A Sub-Optimal Example (cont.)

� ~10000 primitives / frame (300k/s)
� ~230k GS page misses / frame
� Average 23 page misses / primitive
� ~700k GS mem reads, ~800k GS mem 

writes

� Typical of low-polycount games using 
big triangles to make up for the 
quantity



So What Can Be Done?
� Use PS2 preformatted data = Leave the CPU 

for game processing (ai, physics)
� Use strips
� Use specialized VU1 code for each case
� Use VU0 in micro-mode, and transfer data 

out to scratchpad
� Use 4- and 8-bit textures whenever possible
� Bottom line: Need to use parallelism as 

much as possible (PS2�s strength!)



An Optimal Example
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An Optimal Example (cont.)
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An Optimal Example (cont.)

CLUT reads

VU1 starvation is 
diminished by using 
palettized textures



An Optimal Example (cont.)

� ~120000 primitives / frame (7.2M / s)
� ~190k GS page misses / frame
� Average of 1.58 page misses / 

primitive
� ~720k GS mem reads, ~650k GS mem 

writes

� Typical of high-polycount games using 
small triangles



So What Have They Done 
Right?

� Tailored their data for PS2 at tool time
� Ready for VIF compression (possibly!)
� Smaller and denser geometry (better for GS)

� Made good use of VU0 and scratchpad
� Wrote efficient and specialized VU1 code
� To avoid being EE-bound: Transferred 

workload to other processors (VU0 & 
VU1)
� Balance, balance, balance



A Side-By-Side Comparison



A Suggestion If You�re EE-
Bound: Dump work on VU1!
� Contrary to usual saying, but�
� Send minimal data set
� Have VU1 generate the rest
� Must be creative (must be for 

rendering)
� Particle system?
� Building generation?
� Crowd generation, for stadium-based 

games
� Older ideas, like NURBS



A Suggestion If You�re EE-
Bound: Dump work on VU1!(cont.)

Minimal 
data set 

DMA�d

Multiple 
output to 

the GIF 
and GS

Main BUS

GIF
receiving 
data

VU0/VU1 
activity

Nbr prim.



What You Ideally Want To Get

� Over 10M polygons per second, in-game

� More than 50% CPU usage

� More than 80% dual-issue



GIF Packet Viewer (OpenGL)
� We know exactly what went through 

the GIF (GS register settings)
� We�re able to rebuild a scene drawn 

or any part of it, closely simulating 
the GS
� The cool part: We�re able to get more 

out of it than simply redrawing the 
scene!



A Look at a PA Snapshot



Example 1: Normal Mode



Example 2: Wire Frame Mode



Example 3: Overdraw Mode



Example 4: Bracketing VU0 Activity



Example 5: Main Character



Example 6: Texel-to-Pixel 
Ratio Mode



Much More is Possible!

� Drawing order
� Primitive size
� Number of page misses generated
� Number of texture read generated
� 3D view of a scene
� Etc�



GIF Packet Viewer (PS2 GS)

� Sends captured GIF data to an actual 
tool�s GS via DECI2
� Exactly recreates rendering, assuming 

texture uploads were dynamic
� Support textures (unlike the OpenGL 

one)
� Drawing may be done in slow motion



How to get a hold of a PA

� MUST be a licensed PlayStation®2 
developer!

� Contact SCEA/SCEE/SCEI developer 
support group

� Price and availability: TBA!



Conclusion
� PlayStation®2 Performance Analyzer 

is useful at every stage of 
development
� But use it as early as possible!
� Starting as early as engine design stage

� It helps you make full use of the 
hardware
� Make an appointment or send in a disc
� Form on the developer support website
� Sessions at SCEA office, PS2 DevCon and 

GDC



Questions?

� By email
� geoff_audy@playstation.sony.com
� kirk_bender@playstation.sony.com

� Pass by our booth and talk to us!
� �The big Sony booth�

� This presentation available at:
� http://research.scea.com
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