Using Video Input for Games

Richard Marks

Why use video input?

- To create an interface that is:
 - -Intuitive
 - -Simple
 - -Enabling
 - -Enjoyable

Outline

- Introduction/background
- Video as input
- Enhanced reality
- Issues
- Conclusions
- Q&A

Intended audience

- Game designers
- Producers
- Programmers
- Artists
- Gamers

What this talk covers...

- Live video input as a critical component to game play
 - Technology
 - Ideas
 - Examples
 - Issues

and what it does not.

- Non-critical cool uses of video input
 - Texture/skin creation
 - 3D model creation
 - Easter egg bonuses
 - Reaction snapshots (like on a roller coaster or water ride)
 - High-score photos/movies

Video input

- Video As Input
 - Uses video processing as a replacement for joystick/keyboard/mouse
- Enhanced Reality
 - Combines live video and graphics to create an experience that directly involves the participant

Related work

- Reality Fusion, ePlanet, etc.
 - Primarily use motion detection or background subtraction to create sprites
- Many years of SIGGRAPH
 - Myron Krueger's art exhibits
 - MIT media lab ALIVE system
 - Interval's Magic Mirror

Video As Input

- Demo
- User does not see the video
 - Video quality only important for processing
 - Only need to transfer/process useful info
- Framerate and latency are critical
- Immediate and obvious visual feedback is important

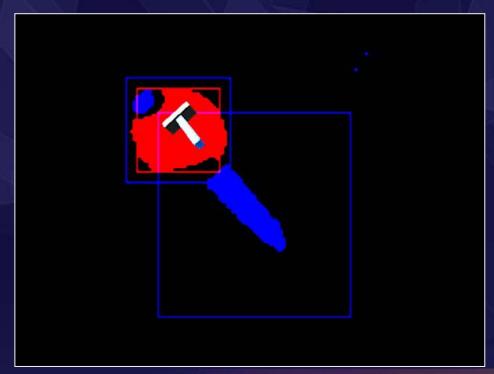
Video processing

- 3D object tracking (props)
 - Color-based
 - Shape-based
- Body tracking
 - Background subtraction
 - Motion tracking
 - Model fitting
- Facial tracking

Reasonable specs

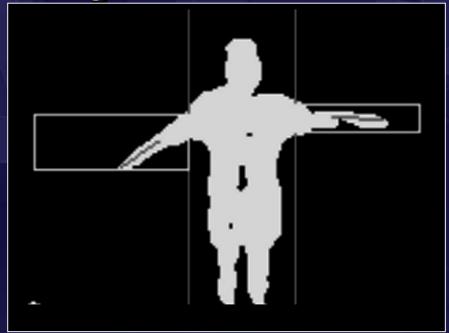
- Real-time
 - 30 to 60 frames/second
 - Less than 3 video frames of latency
- Inexpensive
 - Camera cost-of-goods target <\$20</p>
- Modular
 - Easy to integrate into application
 - Predictable system impact

Current setup


- USB webcam (<\$50 retail)
 - 30 or 60 Hz YUV422 video
 - 320x240 compressed, 160x120 raw
- Video processing
 - Decompression
 - Color thresholding, background subtraction, windowed centroid/moments
- Demo

Traditional game ideas

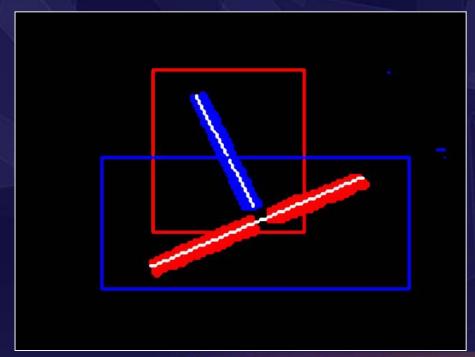
- Sports
 - Baseball, golf, tennis, ping pong
- Dancing
- Fighting
 - Weapons, body
- Flight sims


Medieval Chamber

- Sphere and cylinder color tracking
- Advanced rendering
- Physical simulation/collisions

Soaring

- Background subtraction, line fitting
- Arm angles and motion determine bank angle, attack angle, and airspeed
- Shadow wings mimic arms



New game ideas

- Bucket catch
- Juggling
- Air guitar
- Hand puppets
- Whack-a-mole
- Art creation (pottery wheel, painting)

Marionette

- Color-based tracking
- Character control can be mapped arbitrarily

Enhanced Reality

- User sees video, so quality is important
- Either add to or modify live video
- User and environment enhancements
- Augmented reality but with an entertainment focus

Current Setup

- 1394 webcam (<\$90 retail)
 - 30 Hz YUV422 video
 - 320x240 uncompressed
- Video processing
 - Color thresholding, centroid/moments, lighting estimation, motion tracking
- Demo

Virtual character: Misho the witch

- Misho stands on the blue ball
- Misho likes to watch the red ball
- Misho tries to entertain herself (and you)

http://www.devnet.scea.com/research/index.htm

Virtual pets: butterflies

- Butterflies swarm after red objects
- Blue objects scare them off
- The chief butterfly lands to check it out
- Z-buffer-only rendering gives illusion of 3D

Technologies

- 3D object tracking
- Participant tracking
 - Pixel-accurate figure segmentation
 - Motion estimation
 - Body-part labeling
- Lighting estimation
- Compositing
 - Z-buffer rendering
 - Alpha feathering

Future ideas

- Magic duel (head-to-head first-person video combat) for SIGGRAPH 2001
- Fun House
- Casper the ghost
- Teletubbies
- Superheroes
 - Fantastic Four (Torch, Invisible Girl, Mr. Fantastic, Thing)
 - X-Men (Cyclops, Wolverine)
 - Ironman, Silver Surfer, Spider Man

Issues

- Lighting conditions
 - Insufficient ambient lighting
 - Extreme back-lighting (windows)
- Visual distractions
 - Mirrors
 - Movement, color
- Camera variance
- Field of view vs. resolution tradeoff

Conclusions

- Simpler interfaces are needed to reach a broader audience
- The interface should be considered during game design, and vice versa
- Game designers need to learn what is possible (similar to graphics)

Conclusions

- Real-time movie special effects are coming soon
- Video input will be a part of future computer entertainment

SCEA Research & Development

http://www.devnet.scea.com/research/index.htm

