

Autonomous Characters for Games and Animation

Craig W. Reynolds Sony Computer Entertainment America

September 21, 1999

Autonomous Characters for Games and Animation

- Self-directing characters which operate autonomously ("puppets that pull their own strings" -Ann Marion)
- Applications in:
 - games and other interactive venues
 - animation for television and feature films
- History:
 - first used experimentally in 1987
 - in wide commercial use today

Autonomous Characters

- Autonomous agents for simulated 3D worlds
 - situated
 - embodied
- Intersection of several fields
 - ethology
 - artificial life
 - autonomous robotics
 - dramatic characters
- Adjunct to physically-based modeling
 - dynamics versus volition
 - bouncing ball versus pursuing puppy

Reactive Behavior

- Behavior driven by reaction to environment
 - both passive scenery and active characters
- Simplifies complex animation
 - many characters can be animated by a single behavior
- Allows user interaction

improvisational style permits unscripted action

Applications of Autonomous Characters

- Behavioral animation (film and television)
 - coordinated group motion
 - extras / background action
- Interactive multimedia (games / virtual reality)
 - opponents and allies
 - background characters
- Autonomous robotics
 - search / exploration / mapping
 - prototyping for evolutionary robotics
- Theoretical biology
 - testing theories of emergent natural behavior

Creating Character Behaviors

- By design
 - programming
 - authoring

(example: Motion Factory)

Through self-organization

– evolution

- and other forms of machine learning:

neural nets decision trees classifier systems simulated annealing

Ad hoc Behavioral Hierarchy

- Action selection
 - goals and strategies
- Path selection / steering
 - global motion
- Pose selection / locomotion
 - local motion (animation)

Combining Simultaneous Behaviors

- Combination
 - discrete selection
 - behavioral blending
- Low priority behavior should not be:
 - completely locked out

 allowed to contradict (and perhaps cancel out) a higher priority behavior

Behavioral Blending

- Summation / averaging
- Prioritized sequential selection
 - first active
 - stochastic (dithered) decision tree

E_\/A

l ife

Behavioral Animation

Behavioral Animation

E_\/A

ife

- Background action
- Autonomous characters
 behavioral model
 graphical model
- Improvised action

Behavioral Animation: Group Motion

- Individual
 - simple local behavior
 - interaction with:
 - nearby individuals
 - local environment
- Group:
 - complex global behavior

Behavioral Animation: Examples of Group Motion

- People
 - crowds, mobs, passersby
- Animal
 - flocks, schools, herds
- Vehicle
 - traffic

Applications of Behavioral Animations

- 1987: Stanley and Stella in: Breaking the Ice, (short) Director: Larry Malone, Producer: Symbolics, Inc.
- 1988: Behave, (short) Produced and directed by Rebecca Allen
- 1989: The Little Death, (short) Director: Matt Elson, Producer: Symbolics, Inc.
- 1992: Batman Returns, (feature) Director: Tim Burton, Producer: Warner Brothers
- 1993: *Cliffhanger,* (feature) Director: Renny Harlin, Producer: Carolco.
- 1994: The Lion King, (feature) Director: Allers / Minkoff, Producer: Disney.

Applications of Behavioral Animations

- 1996: From Dusk Till Dawn, (feature) Director: Robert Rodriguez, Producer: Miramax
- 1996: The Hunchback of Notre Dame, (feature) Director: Trousdale / Wise, Producer: Disney.
- 1997: Hercules, (feature) Director: Clements / Musker, Producer: Disney.
- 1997: Spawn, (feature) Director: Dippé, Producer: Disney.
- 1997: Starship Troopers, (feature) Director: Verhoeven, Producer: Tristar Pictures.
- 1998: Mulan, (feature) Director: Bancroft/Cook, Producer: Disney.

Applications of Behavioral Animations

- 1998: Antz, (feature) Director: Darnell/Guterman/Johnson, Producer: DreamWorks/PDI.
- 1998: A Bugs Life, (feature) Director: Lasseter/Stanton, Producer: Disney/Pixar.
- 1998: The Prince of Egypt, (feature) Director: Chapman/Hickner/Wells, Producer: DreamWorks.
- 1999: Star Wars: Episode I---The Phantom Menace, (feature) Director: Lucas, Producer: Lucasfilm.

Autonomous Character Case Studies

I ife

- Hand programmed
 - steering behavior library
 - boids
 - hockey players
- Evolution
 - corridor following
 - tag players

Steering Behaviors

- seek or flee from a location
- pursuit and evasion
- arrival (position / velocity / time constraints)
- obstacle avoidance / containment
- path / wall / flow field following
- group behaviors
 - unaligned collision avoidance
 - Leader following
 - flocking (three components)

Steering Behaviors

...steering behavior demos...

Boid Flocking (three component steering behaviors)

- Separation
 - steer to move away from nearby flockmates
- Alignment
 - steer toward average heading of nearby flockmates (accelerate to match average velocity of nearby flockmates)
- Cohesion
 - steer towards average position of nearby flockmates

Boids: Separation

Boids: Alignment

Boids: Aggregation

Boids (full behavioral model)

Ev/Al ife

- Obstacle avoidance
- Flocking
 - separation
 - alignment
 - cohesion
- Migratory (attraction / repulsion)

Boids Web Page

http://www.red.com/cwr/boids.html

Boids Video

....boids video....

Basic Hockey Player

- Physical model
 - point mass
 - limited force and velocity
 - collision modeling (as cylinder)
- Awareness of
 - position and velocity of players and puck
 - position of rink and markings
- Behaviors:
 - avoid rink walls and goal nets
 - chase loose puck, skate towards location...

EVAI ife

Assigned role

(forward, wing, defenseman, goalie)

Hockey Role Model

- Defenseman
 - if you have the puck...
 - if your teammate has the puck...
 - if puck is within your zone:
 - discourage shot on goal
 - discourage pass to opponent
 - don't crowd goalie
 - do basic hockey play stuff

Hockey Demo

E_VA_{Life}

...hockey demo...

Evolution of Behavior

- Agent in simulated world
- Evolution of
 - behavioral controller
 - agent morphology (see Sims SIGGRAPH 94)
- Fitness based on agent's performance
 - objective fitness metric
 - competitive fitness

Evolution of Corridor Following Behavior in a Noisy World

- Evolve controller for abstract vehicle
- Task: corridor following
 - noisy range sensors
 - noisy steering mechanism
- Evolution of sensor morphology

Corridor Following: goal

Corridor following: fitness

EvALife

Corridor Following: Results

- Works well
- Difficulty strongly related to the representation used
- "Competent" controllers easy to find
- Reliability of controllers is difficult to measure

Corridor Following: Experimental Design

- Vehicle model
 - constant speed
 - limited steering angle
 - noisy sensors (arbitrary number & direction)
 - noisy steering mechanism
- Genetic Programming
 - hybrid steady-state model
 - worst of four noisy trials
 - population: 2000
 - size limit for evolved programs: 50

Competition, Coevolution and the Game of Tag

- The game of tag
 - symmetrical pursuit and evasion
 - role reversal
- Goal: discover steering behavior for tag
- Method: emergence of behavior
 evolution
 - competitive fitness
- Self-organization: no expert knowledge required

Competition, Coevolution and the Game of Tag -- Examples 1

E_{\/}ALife

Competition, Coevolution and the Game of Tag -- Examples 2

Competition, Coevolution and the Game of Tag -- Examples 3

Competition, Coevolution and the Game of Tag -- The Results

- It works (more or less)
- An ecology of competing behaviors will arise
- All evolved behaviors were sub-optimal (perhaps do to *collusion*: "live and let live")

Conclusion

- Autonomous characters:
 - add richness and complexity to virtual worlds
 - automate creation of groups and crowd scenes
 - allow life-like improvisational action
 - can react to unanticipated situations, like user input
- Games and animation provide many applications of, testbeds for, and problems to be solved by research in:
 - artificial life
 - artificial intelligence
 - evolutionary computation
 - and other biologically-inspired methods

