TOSHIBA

TX System RISC
TX79 Core Architecture

(Symmetric 2-way superscalar
64-bit CPU) Rev. 2.0

TOSHIBA CORPORATION

The information contained herein is subject to change without notice.

The information contained herein is presented only as a guide for the applications of our
products. No responsibility is assumed by TOSHIBA for any infringements of patents or
other rights of the third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of TOSHIBA or others.

TOSHIBA is continually working to improve the quality and reliability of its products.
Nevertheless, semiconductor devices in general can malfunction or fail due to their
inherent electrical sensitivity and vulnerability to physical stress.

It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with
the standards of safety in making a safe design for the entire system, and to avoid
situations in which a malfunction or failure of such TOSHIBA products could cause |oss
of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within
specified operating ranges as set forth in the most recent TOSHIBA products
specifications.

Also, please keep in mind the precautions and conditions set forth in the “Handling
Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook™ etc..

The Toshiba products listed in this document are intended for usage in genera
electronics applications (computer, personal equipment, office equipment, measuring
equipment, industrial robotics, domestic appliances, etc.).

These Toshiba products are neither intended nor warranted for usage in equipment that
requires extraordinarily high quality and/or reliability or a mafunction or failure of
which may cause loss of human life or bodily injury (“Unintended Usage’).
Unintended Usage include atomic energy control instruments, airplane or spaceship
instruments, transportation instruments, traffic signal instruments, combustion control
instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of
Toshiba products listed in this document shall be made at the customer’s own risk.

The products described in this document may include products subject to the foreign
exchange and foreign trade laws.

© 2001 TOSHIBA CORPORATION
All Rights Reserved

Preface

Thank you for choosing Toshiba semiconductor products. Thisisthe year 2000 edition of the user’s
manual for the architecture of the TX79 RISC microprocessor core, a member of the TX System RISC

Family of Toshiba microprocessors.

Thisuser’s manual is designed to be easily understood by engineers who are designing a Toshiba
microprocessor into their products for the first time. No special knowledge of this architectureis
assumed — the contents includes basic information about the architecture of the TX79 microprocessor

core as well as more advanced, in-depth description.

Toshiba are continually updating technical publications. Any comments and suggestions regarding any
Toshiba document are most welcome and will be taken into account when subsequent editions are
prepared. To receive updates to the information in this manual, or for additional information about this

architecture, please contact your nearest Toshiba office or authorized Toshiba dealer.

April 2001

X
TOSHIBA Contents m rise”

CONTENTS

Handling Precautions
C790 User’s Manual

1.

2.

T A goTo [T o4 Ao} o PP 1-1
O T LU (T PP TP 1-2
1.2 ReElated DOCUMIENTScoutiiiiiitiite ettt ettt e et e e e st e e s st et e e s anb e e e e s st re e e e s anreeeennreeas 1-3
1.3 REVISION HISTOMY ...ttt ettt e e e e e bt e e s st e e s et e e e e s ane e e e snneeas 1-4
1.4 Conventions Used in ThiS ManUAIc..oooiiiiiiiiiie e 1-5
1.5 Restrictions for Use of the C790 CPU COre........ccoiiiiiiiiiiiiiee ettt 1-6

ATCRITECTUTE OVEIVIEW ...ttt ettt e e ekt e e e s et e e e e anre e e e s ane e e s e 2-1
2.1 Block Diagram and Functional BIOCK DESCHPLONSccccvviiiiiiee i e e e e 2-2

2250 T R = O | PSSP 2-3

2250 T |11V USROS 2-3

2.0.3 CACNES. ettt e e b b e e e ba e e e s abbe e e aabeeae e 2-3

2.1.4 Issue Logic and Staging REQISIEIS.......cuuiiieii i et e e e e e e e raeeaaae s 2-3

2.1.5 GPR (General Purpose Registers) and FPR (Floating-Point Registers)...........cccccvveee..... 2-3

2.1.6 The Five EXECULION PIPES.....cuuiiiie ettt a e e et e e e e e e e e e raeeeee s 2-3

2% L 0 A 0 = Vg o I A =SSR 2-3
2.1.6.2 LS - LOAU/SIOrE PiPe...cci ittt e e e e e e r e e e e e e a e 2-3
2.1.6.3 BR -BranCh PiPE oottt a e e a e e e e 2-3
2.1.6.4 CL - COPLIFPU PIPE ..ottt ettt sttt ettt nae e e s 2-3

2.1.7 Operand/BYPasS I0QICccciiiiiiiiiiiiiie e e ettt e e e e e e e e e e e a e e e e e e s rrraaaas 2-4

2.1.8 Response Buffer and Writeback BUFfer..........cccceoviiiiiiiiiiice e 2-4

P e T U [@ PP 2-4

2.1.10 ReSUIt aNd MOVE BUSEScuiiiiiiiiiiii ettt e e e e e nree s 2-4

2.1.11 Bus Interface Unit and BIU BUS..........c.uuiiiiiiiiieeiieee ettt 2-4
2.2 Superscalar PIipeling OPErationcccuuiiieieeiiiiiiiiiieee e e essre e e e e e e s s e e e e e e e s s s nnnrrreeeaaaeans 2-5

2.2.1 Integer Instruction PIPeling STAgEScccvviiiiiiiee e 2-5

2.2.2 C1 (COP1/FPU) Instruction Pipeling Stagescccceeeiiviiiiiiieie e e e eeeiveeeeea e 2-8

2.2.3 Classification and Routing of Instructions According to Execution Pipelines................. 2-10

2.2.4 Instruction Issue COMDINALIONScooiiiiiiiiiiiee e e 2-12
A T o L= |1 (=T PRSP PSERRR 2-14

2 B N O o U I = To 1= (=] £ SRR 2-14

2.3.2 FPU REUISIEIS ...uvtiiiiiie e e ittt et e e e e e e s sttt e e e e e e e s s ettt e e e e e e e e s s s antbaaeeeeaeeeeaannnreeeas 2-14

R T B O @ 1 =0 I = L= [] (=T SRR 2-15

X
TOSHIBA Contents m rise”

A V[g o] VY = T F= To [T 1T o PSSP 2-16
A T O Vol o 1=V =T o o] o PSPPSR 2-17
2.6 BUS INEEITACE ..ottt ettt e e e bbbt e e e et b e e e e e bbb e e e nbeeae e 2-18
2.7 Floating POINE UNIL.....cooioiiiiiiiiece ettt e e e e e s s st ae e e e e e e e s s et r e e e e e e e e s sannnaaaeeeeeaans 2-18
2.8 PerfOrmManCe COUNTETuiiii ittt ettt ettt ettt e e et et e e e s abe e e e s anbbeeaeaabbneaesanrneeeas 2-19
2.9 Debug and Tracing FUNCHONScoiuiiiiiiiiiie ettt et e e e sabbe e e e sbaee e 2-19
3. Instruction Set OVerview and SUMMIAIYooccuiiiieeeeeeeiiiiiieeeeeeeeesssisssaeeeeaeessssnnssseneeaeasssannns 3-1
G A 1 £ o (U ot 1o o I PP TP PP PRP P PPTPPRN 3-2
3.2 CPU INSIrUCHON St FOIMALS.......eeiiiiiiiiiiiiiiie et neee 3-3
3.3 INSIIUCLION SEL SUMIMIAIYeeiiiiiiiiiee ettt e et e e e e e e e s st e e e e e e e s s ssastbaeeeeaaeessaasbbreeeeesanns 3-4
3.3.1 LOAd/StOre INSIUCHIONSvieieeiiiiiie ettt e s e e e e 3-4
3.3.1.1 NOrmMal LOAdS @nd SEOIESeeiiiiiiiiiiiiiite et e ettt e ettt et e e rabee e e s saee e e e s anbeeaeans 3-4
3.3.1.2 Multimedia Loads and STOTESeeiiiiuiiiiiiiiiiee ettt e e 3-5
3.3.1.3 Coprocessor LOads and STOMEScccuvviiiiiieeiiiiiiiiiieeeee e e s esiiieeeee e e e e s s snsaeeeeeeaeeeesnnnnes 3-5
3.3.1.4 Data Formats and AdAreSSiNgccouiiuuiiiiiiieeeeeiiiiieee e e e e e s s e e e e e s s s sserrreeeeaeessnanns 3-5
3.3.1.5 DEfiNING ACCESS TYPES. . oo i cueeieeeieee e e e i ettt e e e e s s s st r e e e e e s s s st b e e e eaeesssaattrarreaaeeaaans 3-9
3.3.1.6 Scheduling a Load Delay SIOt...........ccuuuiiiiieiiiiceeee e a e 3-13
3.3.2 Computational INSIIUCTIONSeviiieiiiiiiiiiiee e e e e e e e e e e e e e e s s nerneees 3-14
3.3.2.1 ALU Immediate INSIUCHIONS......ccoiitiiiiiiiiiee ettt 3-14
3.3.2.2 Three Operand Register-Type INSIrUCLIONSc..uuvviiieriiiiiiiiiieeee e eriireeee e e e e e 3-15
3.3.2.3 Shift INSIIUCTIONSeeiiiiiiiiie ettt et e e b e e s annee e 3-15
3.3.2.4 Multiply and Divide INSTIUCLIONSciiiieiiiiiiiiiiiiiieeee e e e s st ee e e e e e e e ssinereeeeeeeaee s 3-15
3.3.2.5 B4-Bit OPEIatiONScceieeiiiiciiiiiiiie e e et e e e e e e e e e e e e e s e e e e e e e e e s rnaarreeeaaeeeananes 3-15
3.3.3 Jump and Branch INSIIUCHIONS..........ooiuiiiiiiiie et e e e e e eeees 3-16
GRG0 0 N 101 o o N [1= £ (1 o 1o =PRSS 3-16
3.3.3.2 Branch INSIIUCLIONSueiiiiiiiiie ittt et e e e areee s 3-17
3.3.4 Miscellan@ous INSIIUCTIONSuviiiiiiiiei ettt e e e e 3-18
3.3.4. 1 EXCEPLON INSITUCTIONSueiiiiiiiie e e s i iiitiiiee e e e e e et e e e e e s e e e e e e e e s s nsnneeeeeaeeeeannnns 3-18
3.3.4.2 Serialization INSIIUCHONSuuiiiiiiiiei ettt e e 3-18
3.3.4.3 MIPS IV INSITUCHIONSueviiieiiiieee ettt e e e e e s s 3-19
3.3.5 System Control Coprocessor (COPO) INStrUCIONSoccvvviieeeeeee e 3-20

1 J0C TS T O] o] o Tot= 1= t=To | g A (X0] =) SRR 3-21
3.3.6.1 Coprocessor 1 (COPL) INSIUCHIONS.......ceviieeiiiiiiiiiiiiee et e e e e e e e e e e e e e e 3-21
3.3.7 C790-SPECITIC INSIIUCTIONS......uuiiiiieeiiiiiiiiiiie e e e e e et e e e e e e s e e e e e e s s ssnrraeeeeaeeesasnnsrenees 3-22
3.3.7.1 Integer Multiply / Divide INStTUCHIONSccuviiiiiiieeeee e 3-22
3.3.7.2 MUultimedia INSLIUCHIONSicuuiiiiiiiiei ettt et et e e e e anaee s 3-23

3.4 User Instruction Latency and Repeat RAtecccoviiiiiiiiiiiiiiiiie i 3-25
4., CPU and COPO REQISIEIScciiiiiieeiiee e e e ettt e e e e et e e e e e e st e e e e e e e e e s snnsaaaeeeeeeeesaannnerneeeeesans 4-1
o R O = U T 11 (= PRSPPI 4-2

TOSHIBA Contents m%{étc&m
4.1.1 General PUrPOSE REQISIEISccoi it ettt s s e e e e e e e e e st re e e e e e e e e e e eannes 4-4
4.1.2 HIANd LO REQISIEISccoiiiieeiiee ettt ettt e e e e e s s st e e e e e e e e e s aaaeeeeaaeeesaannes 4-4
4.1.3 Shift AMOUNE (SA) REGQISIENeveiieeeei it e e e e e e e s e e rereeaaeeeeaaans 4-4
o O A = (oo | =T o I O 1U]) (=) TSRS 4-4

4.2 System Control Coprocessor (COPO) REJISIEIS.......uuuuiiiieeiiiiiiiieiiee e e e e e e e e e e ssnrrnaeee e e 4-5
o R 1 (o (= QU= 1] 1T () PSRRI 4-6
N = ¥ o (o] g = {11 (=] G (1) USSR 4-7
4.2.3 EntryLoO Register (2), and EntryLO1 RegisSter (3).......cccovciiiriiiieieeee e e e e e 4-8
N R o] (= Bl R =10 153 =] g) TP REER 4-9
425 PageMask REQISIEr (5)..iiiieiiiiiiiiiiiiie e ettt e e e e e e e e e e st e e e e e e e e s s snnraaeeaaaeesaannns 4-10
N S AV (= To I E = To 1S3 (=T () PSP 4-11
N A = 7= To AV /Ao (o [g S T=To 1S3 T g) TR PSR 4-12
N N O o 11) = =T 1] (=T o () PRSP 4-13
e N = 011 0Y/ o T =T o 1S (=T g 10) SRR 4-14
4.2.10 Compare REGISIEN (L1) ..viveeeiiiiiiiiiieiee e e s s eciree e e e e e e e e st e e e e e e e e s snn e e eeeaaeesassssnsaneeaaaeesannnns 4-15
e R = 110 [=T o £ (= (22 TR PSSP 4-16

4.2.11.1 Status RegiStEr FOMMAL.........ccuuiiiiiiie e e e e e e s s e e e e e e e s snsrnaeeeeaee s 4-17

4.2.11.2 Status Register Modes and ACCESS STALEScuvviieeiiiiiiiiiiiiiireee e 4-18
4.2.12 CaUuSE REGISIEN (L3) .urriiiiieeiiiiiiiiiiie i e e et e e e e e s e e e e e e s e st e e e e e e e e s e nnsaraeeeaaeesennnes 4-19
e T o O = L= T 13 (T g (2 PSSR 4-21
N I S = (o I L= 153 (=T g (15) PSSP 4-22
N RS o g o [R =T 1] (T g (1) U PEEER 4-23
N N R == To | A [0 [R T=To 1] (T g 22) PSSR 4-25
N A B =T o U T =T 1] (=] £ 2 SRR 4-26
4.2.18 Performance Counter REQISEIS (25)cccuuiiiiiiieii e e e e srrae e e e e e e e 4-28
4.2.19 TagLo (28) and TagHi (29) REQISIEISccceeeeiii e e e 4-31
N = o =1 = O (10) PSSP 4-33

5. EXception Processing and RESEI.......ccoiiiiiiiiiiiiiieeee ettt e e e e s rere e e e e e e 5-1

5.1 The Exception HandliNg PrOCESSuuuiiiiiiiiiiiiieeeee ettt e e e e e e e s snraae e e e e e e 5-2
L0t O R I = = B o =T o 1T SRS 5-2
B5.1.2 LeVEI 2 EXCEPLONS ..eeeveieiii it ettt e e sttt e e e e e e s st e e e e e e e s e anraan e e e aae s s e anntrnaeens 5-5

5.2 EXCeption VECIOr LOCALIONSuuiiiieiiiiiiiiiieiee e e e ettt e e e e e e st e e e e e e e s st aa e e e e e e e e s s snnsrnneeeeeanns 5-7

I I O 10 Y= o LT 0[S (=T Y= 1 1] o PSRRI 5-8

5.4 MaSKING @N €XCEPLION........cceeiiieieiee e e e et e e e e e e e et e e e e e e e e s s e e e e e e e e s s s aastnaaeeaaeeesaannnrenneeeseans 5-9

LTI B 1] V] (o D 1= o g o] 1o o PRSP OUSRRR 5-10
LR U0 R (ot =T o) 1o o 1 = (o)] 778 5-10
LR = L= 1T = (L= o] 1o) o SRS 5-11
5.5.3 Non-Maskable Interrupt (NMI) EXCEPLION.........ccccviiiiiiiee e 5-12
5.5.4 Performance Counter EXCEPLIONc.c.uviiiiiiiii it e e e e e 5-13

X
TOSHIBA Contents m rise”

LTI T B 1= o1 T [o =T o 1 o] o SRR 5-14
5.5.6 Address Error EXCEPLIONuuuiiiiiiei i iiiiieiee e e e e s st et e e e e e e s sitaae e e e e e e e s snnnraaneeaaee s e s annreenes 5-15
5.5.7 TLB REfil EXCEPUON ..cooeeeiieeeee ettt e e e e e e s st e e e e e e s s e nneaeneas 5-16
5.5.8 TLB INvalid EXCEPLON.......cccviiiiiiee ettt e e e e e e st e e e e e e e e e nneraees 5-17
5.5.9 TLB Modified EXCEPLIONuuiiiiiieie ettt e e e e e e e e e e e e s s raa e e e e e e e e e snsrnnees 5-18
5.5.10 BUS ETOr EXCEPLION.cciiiiiiiiiieeee ettt e e ettt e e e e e e s st e e e e e e e s s st b ane e e e e e e e s e nnnnneaeas 5-19
5.5.11 System Call EXCEPLION.......ccuiiiieiie e ittt e e e e st e e e e e et r e e e e e e s s s araaneeaaeeesennnernees 5-20
5.5.12 BREAK INStrUCtioN EXCEPLION....ccccccii ittt e e 5-21
5.5.13 Reserved INStruCtion EXCEPLION..........ccuviiiieie ettt e e e e e e e e e e e 5-22
5.5.14 Coprocessor Unusable EXCEPLION.........c.uuuiiiie it e e e e e neeaees 5-23
LTI T [1 (=T U o (o =T o 1o o USSP 5-24
LR T T (@ 3 (o= o 1] TSP 5-25
5.5.17 Integer OVErflow EXCEPLIONcccciiiiiieeece ettt e e e e e e s e e e e e e e e s s e nnnnes 5-26
LTS R =T o B (o= o (T OO 5-27
5.5.19 Floating-Point EXCEPLIONcoiiiiiiiiiiiiiiie ettt ettt ettt et ee e e e s saba e e e snbaeeaeans 5-28
O Y =T 0 g o] o VALY F= T F= Yo T=] 4 Y= oL S 6-1
6.1 Translation LOOK-aside BUEr (TLB)cuiiieiiiiiiiiiiiiiee e iiiiiiiiee e et ee e e e e e s s saeeeeeee e e e e s nnnnes 6-2
6.1.1 TranSIation STATUS........ccuuiiieiiiiiiee ittt e e et e e s e e s 6-2
6.1.2 MUHRIPIE MAICNES....ccii it e e e e e s s st e e e e e s s s snerreeeeenanes 6-2
5.2 AUUIESS SPACES ...vvviiiiiieeeiiiiittiitttee e e e e satteeeeeaaeesssasbtaaeeeeaaesaaaasseteeetaaeessaaastbbeeeeaaeeesaannbbraeeeeeans 6-3
6.2.1 Virtual AQUIESS SPACEuuiiiiiiiie ittt e e ettt e e e e e e et e e e e e s s sasbaaeeeeaaeessasnsrraeeeeaaeans 6-3
6.2.2 PhySIiCal AQUIESS SPACE......ueiiiieeeiiiiitiiiiiee e e e e ettt e e e e e e s st eere e e e e e s s sasbrareeaaeeessanssbrreeeaaens 6-4
6.2.3 Virtual-to-Physical Address Translationccuuvevriieiiiiiiiieieee e 6-4
6.2.4 32-bit Address Translation MOEc.eeviiiiiiiieiie e 6-5
6.2.5 OPEratiNng MOUEScoiiiiiiiiiiiie ettt e e e e e e e e st ee e e e e s s sasbaaeeeeaeeessasnsrrreeeaaanns 6-6
6.2.6 USEI MOUE OPEIALIONSuviiiiiiiieeiiiiiiiiiieeeee e s e s sitreeeeeeeessssasertareaeaeessaasttraeaaaaesssaasrrreeeeeens 6-8
6.2.7 SUPerviSOr MOde OPEIatiONS.........ccuuvriiiiieeeeiiiiiiieeeeee e e e s st ree e e e e s s sssbreeeeeaeeessssnerraeeeeeeas 6-10
6.2.8 Kernel MOde OPEratiONScccuiiiiuriiiiiiieeeiiiiiiiieeeee e s e s ssibreeeeeeeessssabeeeeeeeaeesssnsssreeeeeaeeas 6-11
6.3 SYStem CONLIOl COPIOCESSON .uuiiiieeiiiiiiiiiieeeee e e s e ittt eeeee e s s s stbreeeeeeeesssasssreaeeeeaeeessannssnaneeeeeens 6-14
6.3.1 FOrmMat Of @ TLB ENTIYueviiiiiiie ettt s st e e e e e s st e e e e e e e s s nnnnraaeeeaeeas 6-15
6.4 Virtual-to-Physical Address Translation PrOCESScc.ceeviiiiiiiiiiiiee e eiiiiiieeee e e e s esiieeeeeee e 6-18
6.5 TLB INSITUCTIONS. ..ottt ittt e et e e s b b e e e s st b e e e e e br e e e enneeeenas 6-20

7. Caches7-1

7.1 CACNE FRAMUIES ...ttt ettt ettt e ekttt e e e et bt e e e sk be e e e s eabbe e e e aabbe e e e e aneeeeannes 7-2
7.2 Organization 0f the CACNES............uuiiiiiiiee e e e e e e e s raaeeeeans 7-3
721 DAt@a CaCh. . ..ottt a e a e 7-3
7.2.2 INSIIUCHON CACKNE.ciiiiiiiiie ettt e et e e e e e st e e e e e abea e 7-4
A A T - (o IS £ (0 11 (8] £ PRSPPI 7-5

X
TOSHIBA Contents m rise”

7.2.3.1 Data Cache Tag SIMUCTUIEcciiiiiiiiiiiiiiieiee ettt e e e e e e e e s s sssarraeeeeeeeesannnes 7-6
7.2.3.2 Instruction Cache Tag SIIUCTUIEuuuiiiiiiee e a e 7-6
7.2.4 State of Cache Tags AflEr RESEL.........uueiiii i 7-7
A T O Vol 1[I @ 0 1= - o] o 1SR USSRR 7-8
7.3.1 Line Replacement AlQOMthmcuiiiiiiii e 7-8
7.3.2 Non-blocking Loads and Hit UNAer MiSS..........cccoiiiiiiiiiiiiiiiiee et 7-8
7.3.3 Cache Miss and Hit OPerationseeeieeiiiiiiiiiiieee e e e st e e e e e e s s araraeeeaee s 7-9
7.3.4 Data Cache Wrteback POIICYcc.uuiiiiiiie ettt 7-10
7.3.5 Data Cache State TranSItiONSc..ooiiiiiiiiiiiiee e 7-11
7.3.6 Instruction Cache State TranSItioNSciiiiiiiiieiiiie e 7-12
7.3.7 Data Cache LOCK FUNCLIONcoiiiiiiiiiiiiii ettt 7-12
7.3.7.1 Operations DUMNNG LOCKuuiiiiiiiiiiiieeiee ettt e e e e e e e e e 7-13
7.3.8 Relationship Between Cached and Uncached Operations..........ccccveevveeeeeereeininvvvvenennn 7-13
7.4 Uncached Accelerated BUTTET..........ooiiiiiiiiieeee et 7-14
7.4.1 UCAB CONFIQUIALIONieiiiiiiie ettt e e e e e st e e e e e e s s nabaeeeeeeeesssnsnreeeeeeeeeas 7-14
T.4.2 TG SIUCLUIE ...coiiiiiiiiieieeeeee ettt ettt ettt ettt ettt et e ettt e e ettt eee et et e e eeeeseesbnenbeeeees 7-14
7.4.3 Non-blocking Loads and HiT UNAEI MiSScceeeiiiiiiiiiiiiiiiiiiee e e e e s ennees 7-14
7.5 Cache CONrOl REQISIEISuiiiiiiiii ettt e e e s e e e e e e e s st rereeeeeesssannraaeeeaaeanns 7-15
7.6 CACHE INSIUCTIONetiiiiiiiiie ettt ekt e et e e e e st et e e s as b b e e e e st be e e e s nabr e e e s abe e e 7-16
S O = U I U 1 TSP 8-1
S % A 1 {0 o (U Tt o] I TP RPPUTTPR 8-2
700 0t O =T o 11 o] [T | SRR 8-3
8.1.2 Signal Naming CONVENTIONueuiiieiiiiiiiieiiie e e e e e st r e e e e e s s s e e e e e e s s ssanrrar e e e e e e e s annnrenes 8-3
8.2 CPU BUS AICNITECIUIE ...ttt ettt e et ee e e skt e e e s et be e e e e bae e sanee 8-4
8.2.1 CPU Bus Connectivity for Address and Control Paths............cccccccei i, 8-5
8.2.2 CPU Bus Connectivity for Data Paths...........cccccooiiiiiiiiiii e 8-6
8.3 CPU BUS Signal DESCHPLIONS.....ceiiieeiiiiciiiiiiee e e e e e sttt e e e e e e s s st e e e e e e s s snntrreereaeeesesnnseraneeeaaans 8-7
8.3.1 AJAresS BUS SIGNAIS ...occceiiiiiiiieie ettt e e a e e e 8-7
8.4 Overview Of CPU BUS OPEIatiONS.........c.uuviiiieeeeiiiiiiieeeie e e e e sssiiteee e e e e e e s ssnsaaareeaaessssnnnnsnneeeeaeas 8-12
8.4.1 CPU BUS OPEIALIONScceeiiiiiiiiiee e e ettt e e e e e s sttt e e e e e e e s e st e e e ae e s s asnnbraaeeeeaeessanrnnees 8-12
8.4.2 PrOCESSON REMUESES ...oeeiiiiiiiiiiiiiiieieeeteeeeeeeseeaeeesaeeseseeeeseeeseeeessseaseeseeeessesssssssesessssssssssssnnnes 8-12
8.4.2.1 REAU REQUESLESuueiiiiei ittt e e ettt e e e e e s et e e e e e e s s sssbbaeeeeeaaeessaanstraneeaaeeenaanns 8-12
8.4.2.2 WWIEE REQUESES.....cciiieiitiiei e e e e e e e e e e s s e st e e e e e e e e s esnannseaneeaaeeeaaaans 8-13
8.4.3 BUS EITOr OPEIAtIONS......iiiiiiiiieiie ettt e e ettt e e e e e e s st e e e e e e e s s snbbbaeeaeaeeessannrreees 8-13
8.5 CPU Bus Transaction Protocols and TimMiNgcoeuuiiroiiiiiiieieeeee e ssssieiirieeee e e e e e s ssnssseeeeees 8-14
8.5.1 ArDitration OPEIatiONScuviiiiiiieee ittt et e e e e s s e e e e e e s s st b e e e e e e e s e nnrrraes 8-14
8.5.1.1 CYCIE StEAIINGvvviiieiee ettt e e e e e e e e aa e e 8-15
8.5.2 CPU SiNGIe OPEIatiONScuuiiiiiieeeiiiiiiiiieee e e e sssitieee e e e e e s s st ee e e e e s s ssssbeeeeeeeeessnnnssrenees 8-16
8.5.2.1 CPU SINGIE REAUSeiiiiiiiiiie et e e e e e e e e s s e e e aeeeeas 8-16

X
TOSHIBA Contents m rise”

8.5.2.2 CPU SINGIE WHIIES ..coeiiiiiiiiiiiieeee ettt ettt e e e e e e s st e e e e e e s snnnsneeeeaeeeesnnnnes 8-17
8.5.2.3 CPU Single Read-Write-Read-WIrite CYCIES........ccuveeiiiiiiiiiiiiiiiiiiee e 8-18
8.5.3 CPU BUISt OPEratiOnNS........c.uuuiiiiiiee e i iiiiiiieee e e e s sttt e e e e e e s s e e e e e e e s s snnraaneeeaeessaannrnnens 8-19
8.5.3.1 CPU BUISE REAUS. ... eiiii ittt e e b e e e sanaee s 8-19
8.5.3.2 CPU BUISE WIS ...ttt ettt ettt e e et be e e e e bbe e e e sanaeeas 8-20
8.5.3.3 CPU Burst Read-WHIite CYCIESuuuuiiiiiieeiii ittt e e e e e e e e e e e 8-21
8.5.3.4 CPU BuUrst Write-Read CYCIESuuuiiiiiiieiiiiiiiieiiee et e e s 8-21
8.5.4 CPU Non-Pipeline Single OPErationsccoeiiicuriiieiee e ieiiiieeeee e e e e esciiieeeee e e e e e ssnsneees 8-22
8.5.4.1 CPU Non-Pipeline Single REAASuuuiiiiiiiiiiiiiieeee et 8-22
8.5.4.2 CPU Non-Pipeline Single WIIEScceiiiiiiiiiiiiiiiice et 8-23
8.5.5 CPU Non-Pipeline BUrst OPEratiONScceieeiiiiiiiieiieeeeeseciiieeeee e e e e esiiveeeeee e e e s esnnseeeees 8-23
8.5.5.1 CPU Non-Pipeling BUrst REAUS............uueeiiieiiiiiiiiiiieee et e e e e 8-23
8.5.5.2 CPU Non-Pipeling BUrst WISuuuiiiieeiiiiiiiiiie et 8-24
8.5.6 BUS EITOr OPEIAtIONS......iiiiiiiiiiiite e e ettt e e e e e ettt e e e e e e e s st ee e e e e s s s snnbbbreeeaaeesssannsreees 8-25
8.5.6.1 BUS EIrOr EXCEPLIONSeviiiiieiie ettt ettt e e e e e e e e e e s e e e e e e e e 8-25
8.5.6.2 CPU BUS CyCle TermMINALIONccooiiuriiiiiiie e iiiiiiiiee e e e e essiiireeee e e e e s s eeeee e e s enanes 8-26
8.5.6.3 Bus Error Timing with No Pending Operation...........ccccovcuveveriiieeee e 8-26
8.5.6.4 Bus Error Timing with One Pending OPerationccueverriieeeeiniieee e eieeeens 8-26
8.5.6.5 Bus Error Timing with Two Pending Operations.............cceeeriiiiiie i 8-28

9. PerfOrMAaNCE COUNTET ...oiiiiiiiiie ittt e ekt e e s st e e e st et e e s aa b b e e e s abbe e e e s nabneesanne s 9-1
S N O 1V Y1 TP PSP 9-2
9.2 Performance Counters and Performance Control REQIStErScevvveeeeeiiiiiiiiiiiiiieeeee e e, 9-2
9.2.1 Accessing Counters and REJISIEISccuuiiiiiiiie e 9-3
9.2.2 State of Performance Counter Control Registers Upon ReSet...........cccovvvvvvvviiieeeeeeeennn. 9-4

1S IR T 701U {1 (= g o =T = {0 o [PEERR USSR 9-5
0.3.1 COUNTET EVENES...eeiiiiiiiiiiit it e ettt e e e e e st e e e e e e e s e snb s e e e e e e e e e s aaannsnsneeeaaeesaannnrrnneaesaans 9-6
0.3.1.1 EVENT DESCHIPLONS ..ciiiieeiiiiiiiiie ettt e e e e e e e e e e e e s eeeeaaeesssnnbnneeeeaaeesannn 9-7
9.3.2 Handling Performance Counter EXCEPLIONS.........cuviiiiiiiiiiiiiiiie et e e esiraeeee e 9-10
9.3.3 Priority of CoUNter EXCEPLIONS.......c.viiiiiiie et e e e e e e e e e e e e e e e sneaaneeeaeeas 9-11

S IR S [011 (= 14T o @ 11] | (= =SSR 9-11
9.3.5 The NOte t0 Read COUNLETSoo.ueiiiieiiiiit ettt et e e s earee e e 9-12
10. Floating-Point Unit, CPL (OPTION)......uuiiiiiieeiiiiiiiiiiieee e e e eesiiieee e e e e e e s siereeee e e e e e s ssnsneeeeeeeeeesannnnees 10-1
O R O 1Y =T V1= PR 10-2
10.2 Floating POINE REGISIENuviiiiiie it e e e e e e e e e s e b e e e eeaeeeennnneees 10-2
10.2.1 Floating-Point General RegiSters (FGRS)uuiiiiieiiiiiiiiiieiee et siiree e e e 10-2
10.2.2 Floating-Point RegISErs (FPRS).......uuuiiiiieiiiiiiieieee ettt e e e st r e e e e e snraaneeaa e 10-4
10.2.3 Floating-Point CoNtrol REQISIEISciiiiiiiiiiiiiiecee e e e e 10-4
10.2.4 Accessing the FP Control and Implementation/Revision Registerscccccvvveveeeen.n. 10-9
10.3 Floating-Point FOIMALSceiiiieiiiiiieiie e et e e e e e s e e e e e e st e e e e e e e e s seannanneeaaeaans 10-10

X
TOSHIBA Contents m rise”

10.4 Binary FiXed-POINt FOMMAL......ccociiiiiiiiiiiiie et e e e e e e e e e e e s snnraaneeeeeeeans 10-12
10.5 Floating-Point INStruction Set SUMMAIY..........c.cvviiiiie e e s e e e e e 10-13
10.5.1 Load, Store and Move Instructions (Table 10-10)...........cccocciiiiiiieeieee e 10-13
10.5.2 Conversion Instructions (Table 10-11).........ccccirieeii i e e 10-14
10.5.3 Computational Instructions (Table 10-12)cccceeeiiiiiiiiiieiee e 10-14
10.5.4 Compare and Branch Instructions (Table 10-13)ccccoccvieeeiiiiiiiiiieee e 10-15
11. Floating-Point EXCEPtion (OPLION) couuiiiiiiiie et e e e e e e e e e 11-1
I A 1o (oo U T 1o o B PP PP P PP PP PP 11-2
I (o =T o] (o g T Y =2 PR URR 11-2
11.3 EXCEePLiON Trap PrOCESSING ..ociieiiiiiiiiiiiiiieeeeesiitiieeeeee e s s sstbtereeeeeeessssstaeeeeaaesssssnssaaeeeaeessssnnees 11-3
I ! = T £ PP PRRUP 11-3
I e U e CoT= o) o] LSRR 11-5
11.6 Saving and ReSIONNG STALE..........icuiriiiiiie e e e e e e s s s nrraaee e e e e e e e anees 11-9
11.7 Trap Handlers for IEEE Standard 754 EXCEPLONS.........ccuvviiiiieeeeiiiiiiiiieeee e e e e e e e e 11-9
D O I = (o PO 12-1
12.1 REAI-TIME PC TIACING ...uvvtriiiiieeeeiiiiiie et e e e e e et e e e e e e e s st eeeaaaessasstaaaaeeaeeessaansaanneeaaeessareens 12-2
12.1.1 Classification of Branch and Jump INStrUCLIONScccooviiiiiiiiiiiiiececce e 12-2
12.1.2 PC TraCe SIgNAIS.......cccuiiiiiiiee e e i ettt e e s e e e e e e e s e e e e e e e s e seataaeeeaaeeessannsnnneeaaeeans 12-3
12.1.3 Priority of Target AQArESSESc.c.vviiiiiiee it e e e e e e e e e ens 12-7
12.1.4 EXamples Of PC TraCINQcuiieeiiiiiiiiiiieiee e e e e ciiiiiee e s e e e e e sstaee e e e e e e s s ssannaaeeeaaesssannsnrnneeeaens 12-8
12.1.4.1 Sequential EXECULIONcccoii ettt e s e e e e e e e s s s eeeeaeeeeeaannns 12-9
12.1.4.2 Conditional BranCh............oocuiiiiiii e 12-10
12.1.4.3 Indirect Jump (Target in PRASE A)ueviiiieiiiiiiiiieeee ettt e e e e 12-11
12.1.4.4 Indirect Jump (Target in PRASE B)ccoiviiiiiiiiiiiiiiiee ettt 12-12
12.1.4.5 Indirect Jump (During Target PC OUIPUL)ccvuviiiiiiee e sriieeeee e e 12-13
12.1.4.6 Exception (Target in PRASE B)cc.uuiiiiiiiiiiiiiiiieieee et ee e e 12-14
12.1.4.7 Exception (During Target PC OULPUL)ccoviiiiiiiiiiiee e e et e e e e 12-15
12.1.4.8 Exception Generated by Branch or Jump Instruction.............ccccccvieeiieieeee i, 12-16
12.1.4.9 Exception Generated by Branch Delay Slot Instructioncccccccvvvveeeeniiiiinnns 12-17
12.1.4.10 Exception Generated by Target INSTrUCIONcvvviiiiiiieeiiiiiiiiiieeeeee e 12-18
12.1.4.11 Back to Back EXCEpLioNS (CASE 1) ...uuvuiiiiieeiiiiiiiiieiiee et e e e 12-19
12.1.4.12 Back to Back EXCeptions (CASE 1)uuvviiieiiiiiiiiiieiiee ettt e e e 12-20

13, Hardware BreaKPOint. ... ettt e e st e e e e e e s s s nb b e e e e e e e e e ennrnees 13-1
13.1 Hardware BreakpOint....... ... e e e e e e e e e s s e e e e e e e e annrees 13-2
13.1.1 Hardware Breakpoint SIgNaluuiiiiiiiiiiiiiiiicee e e e e e e e 13-2
13.2 Breakpoint REGISIEISuutiiiiiie i e st e e e e e e s e e e e e e s s e e e e e aeeessnntaanaeeaeeeannnrens 13-3
13.2.1 Breakpoint Control RegiSter (BPC)cciiiiiiiiiiiiieeee ettt sraaee e e e 13-4

13.2.2 Instruction Address Breakpoint Register (IAB) / Instruction Address Breakpoint Mask

Vii

X
TOSHIBA Contents m rise”

=T o 115 (= (AN =Y RSP 13-7

13.2.3 Data Address Breakpoint Register (DAB) / Data Address Breakpoint Mask Register
(DY =1) ST R PSPPSR 13-7
13.2.4 Data Value Breakpoint Register (DVB) / Data Value Breakpoint Mask Register (DVBM)13-

8

13.3 Setting BreaKpOiNtot e e e e e e e e e s r e e e annrraes 13-8
13.3.1 Sequence of Setting Breakpoint...... ... e e snraraee e e 13-9
13.3.2 Instruction BreakpPOiNtingoocciiiiiiiie e e s e e e e e e e sre e e e e e e e e s s nnnaraeeaaaes 13-14
13.3.3 Data Address BreakpoinNting........ccc.uueeiieeeiiiiiiiiieeee e e e e e e s s e e e e e e s s snraraeneaae s 13-16
13.3.4 Breakpointing by Data Address and ValUe...............cccvveveiieee e 13-18
13.3.5 Data Value Breakpointingocccuviiiiiiee e e s s e e e e e e s svaae e e e e e e e s s nnnraaeeeaaes 13-19
13.4 Triggering EXIErnal PrODES.........uuuiiiiiii ittt e e e e e e e s s e e e aaens 13-20
13.5 Important notice on using hardware breakpoint..............ccociiiiiiiiiiiiiee e 13-20
A. CPU INSTruCtion St DELAIIScoiiiiiiiiiiiiiiie et A-1
A.1 Description Of an INSTIUCHON..........uuiiiiiiii e e e e e e e e e s e rnnreeeeas A-2
A.1.1 Instruction MNEmMONIC and NAIMEcooiiiiiiiiiiii et siee e e A-2
A.1.2 Instruction ENCOING PiCIUE.........uviiiiiii ittt e e e e e e e e e e e e A-2
N G N o] 11 0 - | TP PTRP PR A-2
N S 0T L PR A-2
N S T 0 = g o] (o PR A-2
ALB RESHICHONS ..ottt ettt e e et e e e e e et b e e e e s bt e e e e s anbbee e e abeeeseanes A-2
N A @ o 1Y = 1o 1S A-2
R S (o7 o 1[0 1 PR A-2
A.1.9 Programming Notes, Implementation NOIEScccviiiiiiee i A-3
A.2 Instruction Description Notation and FUNCLONScccuvveeiiee i A-3
A.2.1.1 Pseudocode Language Statement EXECULIONccooviiiiiiiiiiiiiiiiee e A-3
A.2.1.2 PSeudocode SYMDOISc..uuiiiiiiiiee e e e e e e A-3
A.2.2 Definitions of Pseudocode Functions Used in Instruction Descriptionsccccueee A-4
A.2.2.1 Coprocessor General Register Access Pseudocode Functionscccccvveeeeennn. A-4
A.2.2.2 Load and Store Memory Pseudocode FUNCLIONSccccuviiiiiiiiieee e, A-6
A.2.2.3 MiSCEllANEOUS FUNCHONS.cciiiiiiiiiiiiiee ettt ettt e e ib e e aabae e e e e A-8
A.3 CPU INSIUCHON FOMALScoiiiiieeiiieie ettt ettt et e e s A-9
A4 INSITUCTION DESCIIPIIONS ..eeiiiiieeiiiiiiiiie et e sttt e e e e e e e e e e e e s s s e e e e e e e e ssnssbreeeeeaeeesareees A-10
A5 CPU INSIrUCHON ENCOUING ..oiiiiiiiiiiiiiieeee ettt e e e e e e e e e e e s s snnaaaeeeaaeeenanes A-141
B. C790-Specific INStruction Set DetailSccuuiiiiiiiii i B-1
B.1 Conventions Used in ThiS CRAPLENuuiiiiiiiiiiiiiiiiiie e ssrrrreee e e e e e e e eeaens B-2
B.1.1 Instruction Description Notation and FUNCLIONSccvviiiiiieiiiiiiiiiicneee e B-2
B.1.2 Pseudocode Language Statement EXECULIONccuvveeeiiiiiiiiiiiiiiiieiee e e ssiiiiieeeeee e e e B-2
B.1.3 PSeUAOCOUE SYMDOIS.....cci ittt e s e e e e e e s s eeeeaeee s B-2

X
TOSHIBA Contents m rise”

B.2 Definitions for Pseudocode Functions Used in Operation Descriptions..........ccccccevvvcvvveeeenn.. B-2
B.3 Summary of C790-SpeCifiC INSIIUCLIONScuuiiiiieeii i B-3
B.3.1 Multiply and Multiply-Add INStTUCHONS.......ccciiieiiiiiiiieeee e B-3
B.3.2 Multimedia INSIIUCLIONS.......iuiiiii ittt e et e e s ar e e e s anneeaeas B-3
B.4 INSLrUCHION SEt DELAIIScoiiiiiieieiiiii ettt e e b e nbee s B-6
B.5 C790-Specific INStruction ENCOAINGccccoiiiiiiiiiiieee ettt e e e e e ssrrrae e e e e e e B-163
C. COPO System Control Coprocessor Instruction Set DetailS...........ccccvveeeeeeciiiiiciieeeee e C-1
C.1.1 Notes on the CACHE Instruction SUub-0perationsS...........ccccvveevieeiiiiiiiiiieee e C-7
CaChe VIrUAl AQAIESScooi ittt ettt bbbt e bt e e e s aabb e e e s anbbe e e s eanbeeae e C-7
Cache PhYSICAl AGQUIESSuiiiiiiiee ittt e e e e e e s st e e e e e e e s s ssarraeeeeeeeeennnnees C-7
BTAC VITTUBI AGQOIESS ...ttt ettt ettt et e s s e e e s nnb e e e e nnee s C-7
BTAC INAEX BILS .ottt et e sttt e et e e s b et e e s st r e e e e abr e e e snre s C-7
COPO NOEUSADIE ..ottt ettt et e e ettt e e e e bbe e e e e abe e e e e anbaeeeeaaneeaeeas C-7
TLB EXceptions 0N Cache OPEratiONScivieiiiiiiiiiieiee e s sciiiiee e e e e e s ssarrere e e e e e s s snnnnaeeeeeaeesanns C-8

Hit SUD-0PEIatiON ACCESSESuuiiiiiiiee ittt e e e e e e e e s e e e e e e e e st reeeeaeeeeasnnsraneeeaaaaans C-8
BreakpOinNt EXCEPLIONcciiiiiiiiiiiiiiii ettt e e e e e e s s st e e e e e e s s sssb e e e e e e e e ssnnnsbaneeaeessanns C-8
AdAress ErrOr EXCEPLION ..ottt e e e e e e s st e e e e e e s s asnnbt e eeaaaesssannbbreeeeeanns C-8
C.1.2 Sub-Operation DESCIPLIONSccciiiiiiiiieiee e e e et e e e e s e e e e e e e s sraraaa e e e e e e e s s annraareeeaeas C-9
C.1.3 Updates of Data Tag Status BilScccuueiiireeeiiiiiiiiiiies e e C-13
(ORZ 2N 610120l 10153 (¥ [ox 170 o I = o oo o 1 0o TSR PR C-41
D. COP1 (FPU) INStruction Set DetailScocccviiiiiiee ettt a e e e D-1
D.1 Conventions Used in ThiS CRAPLENuuiiiiiiiiiiiiiiiiiiir e sserrrreee e e e e e e e enees D-2
D.1.1 Instruction Description Notation and FUNCLONScccvviiiiiieiiiiiiiiieeeee e D-2
D.1.2 Pseudocode Language Statement EXECULIONccuvieeeriiiiiiiiiiiiiiieiee e e s eee e e e D-2
D.1.3 PSeUAOCOUE SYMDOIS.....cci ittt e st e e e e e e s s s nabbbreeeeaaeeeas D-2
D.2 Definitions for Pseudocode Functions Used in Operation DescCriptionsccccceeevvvivvveeennn. D-2
[20C T [0 1S3 1 0 o 1o g I LT od] 1[0 L PR D-3
D.4 COPL INSruCtion ENCOTINGcciiiiiiiiiieiiee ettt e e e e e st e e e e e e s st e e e e e e s s ssntreaneeaaeessannns D-40

TOSHIBA

TX
. S
Figures m RiSC”

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.

Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure 4-19.
Figure 4-20.
Figure 4-21.

Figure 5-1.
Figure 5-2.
Figure 6-1.
Figure 6-2.

FIGURES

G4 0N =] oTe 1l B T=To | £ 1o [P REP PRSPPI 2-2
C790 Integer INSruction PIPEIINEvuiiiiiieiiee e 2-5
FPU PIPEIINE......c ettt e e e e e s e e e e e e e s s nnrar e e e e e s annneees 2-8
Instruction Routing in Logical Pipes and Physical PIpes.........cccccceveiiiiiiiiieineee s 2-10
CPU INSrUCHON FOMMALSeiiiiiiiiieiiiiite ettt e s e e nnnee e 3-3
Big-ENdian BYIE OFUEIINGvvvviiiiieeeiiiiiiiiiieeee e e e eesiite e e e e e s e ssieeeeeee e e e e s s snnsaeeeeaaeeessnnees 3-6
Little-ENdian BYIE OFAEINGuuvuiiiieeiiiiiiiiieieee e s estiiieeee e e e e s s e e eee e e s s s snnnreeeeeeeeessnnnens 3-6
Little-Endian Data in & DOUDIEWOIToviiiiiiiieiiiieee e 3-7
Big-Endian Data in a DOUBIEWOI.............uuiiiiiiiiiiiiiiiieee e 3-7
Big-Endian Misaligned Word AdAreSSiNg.........couuicuuriiiiiieeeeiiiiiiieeeeee e s esiiieeeeeeeeesenanes 3-8
Little-Endian Misaligned Word AddreSSiNgoocvvvieiiiieeniiiiiiiieeeee e ssiiieeeeee e e e 3-8
(OB I = T0 1 1= £ PP SPRRRPR 4-3
180 (o) g =T e | 1 (= PP EPPRR PSSR 4-6
RANUOM REGISTET ...uvviiiiiieiiiiiiiiiit et e e e e e e e e s s st e e e e e e e s s snnraeeeeeaeeesnenrees 4-7
EntryLo0 and ENtryLOL REQISTEISuuuiiiiiieeeiiiiiiiiiie et et e e e e e e sanneneeeea e e 4-8
Context RegiSter FOIMIAL..........cc.uviiiiiiee et e e e e e s snaeeeeee e e e e 4-9
PageMaSK REGISIENciiiiiiiiiiiiiiiee ettt e e e e e e e e e e e e s s s annnraeeeeaaennns 4-10
LAV =T I =T o = SRRSO 4-11
Wired Register BOUNAIYuouiiiiiiiiiiiiieiee ettt a e 4-11
S FoTo AN [0 [=T |] = P PPPPR PRI 4-12
L7001 o] =T 0 L3 =] PR 4-13
V1Y o T =T 1] = PRSP 4-14
COMPAIE REGISTENeviiiiiiie e ettt e e e e e e e e e e e e s s st b e e e e e aeeeesaanserneeens 4-15
Y= UL RS =T L = SRR 4-16
CAUSE REISIEI....cci ittt e e e e e e e e e s b e e e e e e e e e aanreeeaens 4-19
oy O T 111 (= P UERPRSORPSRRRN 4-21
o R [0 =T 011 = P UERPRSUPPSRRRN 4-22
Config REGISTEr FOMIALccoi it e e e e e e e e s sereeeeas 4-23
BadPAddr RegiSter FOIMALcoviiiiiiiiiiiiiieee et e e e e seneaeee e e e 4-25
Performance Counter REQISIEISuuuiiiiiiiie e r e e e s e e s neaee s 4-28
TagLo and TagHi REQISIEISuviiiei e 4-31
S g0 = S O =T] 1= SR 4-33
Level 1 Exception processing flOWChart...........ccccov i 5-4
Level 2 Exception processing flOWChart............ccocoiiiiiiiiiiiiii e 5-6
Overview of a Virtual-to-Physical Address Translation............cccoocveiiieiniiennieenniee e 6-3
32-bit Mode Virtual ADdress Translationcccevveriiiiireeiiiieee e eeeee e 6-5

X

TOSHIBA
Figure 6-3 State Transition among Operating MOUESccuiieiiiiiiiiiiiiiiiiiee e 6-6
Figure 6-4. User Mode Virtual AddreSS SPACEcoicvuiiiiiiiiiiee it e e e e ennes 6-8
Figure 6-5. Supervisor Mode Virtual ADdreSS SPACEccovvcviiiiiiiiee i 6-10
Figure 6-6. Kernel Mode AJAreSS SPACEccuviiiiiiiiiiiiiiiiiiiee et e e re e e e e e e e nannes 6-11
Figure 6-7. COPO Registers and the TLB............occuiiiiiiiei et e e e e e 6-14
Figure 6-8. FOrmat Of @ TLB ENTIYccocuiiiiiiiie ettt e e e e e e e e e e e e e e s nnnees 6-15
Figure 6-9. TLB Address TranSIatiOnccuieeiiiiiiiiiiiiiie ettt e e e e e e e e e s s snabbe e e eee e s s snnnnees 6-19
Figure 7-1. Organization Of Data CaChe..........ccoiiiiiiiiiiiii e 7-3
Figure 7-2. Organization of INStruction CaChE...........coviiiiiiiiiiiii e 7-4
Figure 7-3. Read Missed Processed in Sequential Order..........cccvvvveiiiiieeiiiiiiciiiiiieeeeeeeee e 7-10
Figure 7-4. Data Cache Transition Diagram, Writeback ProtoColcccccoovviiiiiiiiiiiiinne e 7-11
Figure 7-5. Instruction Cache Transition DIagram...........couiiiriiiiiiiee e eriiiieeeee e s esiieeeeee e e e e snanes 7-12
Figure 8-1. CPU BUS AIChItECIUIEeviiiiiiiie et e e e e e e e nees 8-4
Figure 8-2. CPU Bus Address and Control Path Connections in System...........ccccvvevveeeeiiicvvvneenn. 8-5
Figure 8-3. CPU Bus Data Path Connections in SYSEMceviiiiiiiiiiiiiieee e esiieeeee e e 8-6
Figure 8-4. Connection of Arbitration SIigNalS............ueeiiieiiiiiiiiiiee e e 8-14
Figure 8-5. Arbitration PrOtOCOL...........ccuuiiiiiiiie it e e e e e e e e e e enneeees 8-15
Figure 8-6. Cycle Stealing ProtOCOIcuiiiiiiiiiiiiiiiiiee et e e e e 8-15
Figure 8-7. CPU SiNGIE REAAScooiiiiiiiiiiiie ettt e e e e e s e e e e e e e nnnees 8-16
Figure 8-8. CPU SINGIE WIILES.......ciiiiiiiiiiieiee ettt e e e e e e s st e e e e e s s s st b e e e e e e e snnnees 8-17
Figure 8-9. CPU Single Read-Write-Read-Write CYCIEScoiiiiiiiiiiiiiiee et 8-18
Figure 8-10. CPU BUISt REAUScciiiiiiiiiiiiie ettt ettt e e e e e e e e e e s st raeee e e e e e e e nnnees 8-19
FIgUre 8-11. CPU BUISE WITES.......ceiiiiiiiiiietee ettt e e ettt e e e e e s s st e e e e e e s s s snebareeeaeeessnneees 8-20
Figure 8-12. CPU Burst Read-WIite CYCIESccuuiiiiiiieii ittt e e e e e 8-21
Figure 8-13. CPU Burst Write-Read CYCIESccuuiiiiiiiei et e e e 8-21
Figure 8-14. CPU Non-Pipeline Single REAUSccovviiiiiiiiiiiiiiiec e 8-22
Figure 8-15. CPU Non-Pipeline SiNgle WIES..........uuiiiiiiiiiieiiiiieeee et e e 8-23
Figure 8-16. CPU Non-Pipeline BUrSt REAUSueuiiiiiiiiiiiiiiiiie et 8-23
Figure 8-17. CPU Non-Pipeling BUrSTWIIESuuviiiiieeiiiiiiiiieiie et 8-24
Figure 8-18. One Operation with BUSERR* as the Last SYSDACK*........ccccccceeiiiiiiieeineee s 8-27
Figure 8-19. One Operation with BUSERR* as SYSAACK® ... 8-27
Figure 8-20. One Operation with BUSERR* as SYSAACK* and the Last SYSDACK*............... 8-28
Figure 8-21. Two Operations with Bus Error as the Last SYSDACK™cccccccciveiiiiieeesiiieeennnns 8-29
Figure 9-1. Format of the Performance Counter Control Register PCCR............cccccceveevviiverees s 9-2
Figure 9-2. Format of Performance Counter Registers PCRO and PCR1ccoccevveviiiiieee s, 9-2
Figure 9-3. CAUSE ReQISter FIRIUScoiiuiiiiiieiiiie ettt 9-10
FIgUIEe 10-1. FP REQISIEIScc ittt ettt ettt ettt sttt e ettt e st et e s b e e baeesbeeebeee s 10-3
Figure 10-2. Implementation/ReViSiON REGISIENcciiiiiiiiiiiiie et 10-5
Figure 10-3. FP Control/Status Register Bit ASSIGNMENTScoviuiiiiiiiiiiee e 10-6
Figure 10-4. Control/Status Register Cause, Flag, and Enable Fieldscccociiiiiieininennnn. 10-7

Xi

X
TOSHIBA Figures m‘;}llggm

Figure 10-5. Single-Precision Floating-Point FOrMatcccuviviieeiiiiiiiiiiieeee e 10-10
Figure 10-6. Double-Precision Floating-Point FOrmMat............cccccvveeiiiiiiiiiiiiiee e 10-10
Figure 10-7. Binary Word Fixed-Point FOMMAL............cviiiiiiiiiiiiiieee e 10-12
Figure 10-8. Binary Long Fixed-Point FOMMALccccuiiiiiiiiiieee i e e 10-12
Figure 11-1. Control/Status Register Exception/Flag/Trap/Enable BitSc.cccooecvviiiiieeiiiinnnee. 11-2
Figure 12-1. Priority of Outputting Jump or EXCepLion Targelccccovvvcvvviierieeeeeiiiiiieieee e e e 12-7
Figure 12-2. Waveform for Sequential EXCECULIONccuiiiiiiiiiiiiie et ee e e 12-9
Figure 12-3. Waveform for Conditional BranChccccccoiiiiiiiiiiiiie e 12-10
Figure 12-4. Waveform for Indirect Jump (Target in Phase A)oooiciiiiieiiee i 12-11
Figure 12-5. Waveform for Indirect Jump (Target in Phase B)..........cocccvvieeiiee i 12-12
Figure 12-6. Waveform for Indirect Jump (During Target PC OUIPUL)covveeeiiiiiiiiiiieieeeeeiinens 12-13
Figure 12-7. Waveform for Exception (Target in Phase B)........cccoceiviiiiiiiiieiiee e 12-14
Figure 12-8. Waveform for Exception (During Target PC OULPUL)........ccvvveeerieeeiiiiiiiiiienee e 12-15
Figure 12-9. Waveform for Exception Generated by Branch or Jump Instruction 12-16
Figure 12-10. Waveform for Exception Generated by Branch Delay Slot Instruction.................. 12-17
Figure 12-11. Waveform for Exception Generated by Target INStructioncccccveeveeeeeninnns 12-18
Figure 12-12. Waveform for Back to Back Exceptions (Case)ooccvviiieiiieeiiiiiiiiiiieee e 12-19
Figure 12-13. Waveform for Back to Back Exceptions (Case 1)ccccvveeeriieeiiiiiiiiiiieee e 12-20
Figure 13-1. Overall Structure of Hardware Breakpoint.............uueeiiieeiiiiiiiiiiiiieee i 13-3
Figure 13-2. Instruction Address Breakpoint REQISIEr.........oocuuviiiiiiiie et 13-7
Figure 13-3. Instruction Address Breakpoint Mask RegISTer.........ccuueeiiiiiiiiiiiiiieee e 13-7
Figure 13-4. Data Address Breakpoint REQISTEr..........cuiiiiiiiiiiiiiiiiee et 13-7
Figure 13-5. Data Address Breakpoint Mask REQISIErcc.uvviiiiiie i 13-7
Figure 13-6. Data Value Breakpoint REGISIEIuuuiiiieiiiiiiiiiiiieee et ee e e e 13-8
Figure 13-7. Data Value Breakpoint Mask REQISIENoovuviiiiiiiie i 13-8
Figure 13-8. Hardware Breakpoint detection flow (Setting)ccccccvveuvviieriieeiiiiiiiiieeee e 13-10
Figure 13-9. Hardware Breakpoint detection flow (IAB)..........ccevviieeiiiiiiiiiieiiee e 13-11
Figure 13-10. Hardware Breakpoint detection flow (DAB/DVB) (1/2)uuueviiiiiiiiiiiiiiiiiieeeeeeinens 13-12
Figure A-1. CPU INSIrUCHON FOIMALSuuiiiiiiiiiiiiiiiiiiie et e et e e e e e s s e e e e e e e s s e A-9

Xii

X
TOSHIBA Tables m rise”

TABLES

Table 1-1. RESHHCHON LISTuiiiiiiiiiieiiiiiee ettt e et e e st e e s e s nreeee e 1-6
Table 2-1. Categories of Instructions and How They Are RoUtedcccccvviiiiieeeiiieeeeeensisiinns 2-11
Table 2-2. Concurrently Issued INStruction Categoriesccccuviiiiiiiiieeeee e e e e 2-13
Table 2-3. CoproCeSSOr O REGISIEIS ...uuuiiiiiiii ittt e e e e e s e e e e e e s s nnssraeeens 2-15
Table 3-1. Load / StOre INSITUCHONSuiiiieiiiie ettt e e e e e nre e 3-4
Table 3-2. Multimedia Load / StOre INSTUCHIONSoocuiiiiiiiiiiie ettt 3-5
Table 3-3. Coprocessor Load / Store INSITUCHIONSocvvviiieiieeee et s e e e e 3-5
Table 3-4. Defining Access Types (BIig-ENdian)coooviiiiiiiiiiiiiiiiiceee e 3-10
Table 3-5. Defining Access Types (Little-Endian)...........cccvveiiiiiiiiiiiiiii e 3-12
Table 3-6. ALU Immediate INSITUCHIONS........c.uuiiiiiiiiiee ittt 3-14
Table 3-7. Three Operand Register-Type INSIIUCLIONSccuuviiiiiiiiiree e 3-15
Table 3-8. Shift INSIIUCTIONScociiiiiiiii e e e snree s 3-15
Table 3-9. Multiply and Divide INSIIUCTIONSooiiiiiiiiiiiie et e s e e e e e e e e e s seeeeeeees 3-15
Table 3-10. Jump Instructions Jumping Within a 256 MByte Region.............cccvvvveeieeeeniiicivnnnnnn. 3-16
Table 3-11. Jump Instructions to ADSOIUtE AdAIESSoccueviiiiiiie e 3-16
Table 3-12. PC-Relative Conditional Branch Instructions Comparing 2 Registers............ccccee.... 3-17
Table 3-13. PC-Relative Conditional Branch Instructions Comparing Against Zero..................... 3-17
Table 3-14. EXCePLION INSITUCTIONSuuuiiiiieiiiiiiiiiii e e sttt e e e e st e e e e e e s s s bbb e e e e e e e e s snsnbeeeeeens 3-18
Table 3-15. Serialization INSTIUCTIONScoiiiiiiiiiiii e 3-18
Table 3-16. MIPS IV INSITUCHIONSccoiiiiiieiitiiee ettt e s s 3-19
Table 3-17. System Control Coprocessor INSITUCHIONSuvuiiiiieiiiiiiiiiiieeee e 3-20
Table 3-18. CoprocesSOor 1 INSIIUCHIONSoiceiiiiieiiee ettt e e e e e e e s s e e e e e s s s ennereees 3-21
Table 3-19. C790-Specific Multiply and Divide INSIIUCHONSceviiieeeiiiiiiiiiiiieeee e 3-22
Table 3-20. Multimedia INSITUCHIONScociiiiiiieiiiie et 3-23
Table 3-21. Latencies and Repeat Rates for User INStrUCtON............ooovviiiiiiiiiiieiieeee e 3-25
Table 4-1. CoproCeSSOr O REGISIEISuuiiiiieiiiiiiiiiiieeee ettt e e e e e e e e e s st r e e e e e e e s s snsrreeeens 4-5
Table 4-2. Index Register Field DeSCHPION...........oiiiiiiiiiiieee e a e e 4-6
Table 4-3. Random ReQISIEr FIEIUSociiiiiiiiiiiiiiee e s 4-7
Table 4-4. EntryLoO and EntryLol Register FieldS. ... 4-8
Table 4-5. Context ReQISIEr FIEIUS.........uiviiiiiie e e e e e e s rae e e s sae e e 4-9
Table 4-6. PageMask Register FIeld............ccocviiiiiiiei i 4-10
Table 4-7. Wired Register Field DESCIPLONScvvviiiiiieie e e s e e e e e e e 4-11
Table 4-8. BadVAAr REgIStEr FIelU........cciiiiiiiie et e e e e e e e annee s 4-12
Table 4-9. Count RegISter FIldoiiuiiiiiii e 4-13
Table 4-10. EntryHi Register FIelSooiiiiiiiiiiii e e 4-14
Table 4-11. Compare Register FIldcooiiiiiiii e e 4-15

X
Tables m wisc”

TOSHIBA
Table 4-12. Status RegiSter FIEIAS.........couiiiiiiiiiiiieiee e 4-17
Table 4-13. Cause ReQISter FIeIUS.uuiiiiiiiiiiiiie e raee e 4-19
Table 4-14. EPC ReQISter FIEIUuueiiiiiiei ittt e e e e e e e snenreee e s 4-21
Table 4-15. PRIA ReQISIEN FI@IUSueiiiiiiiiie ettt e e e e e s s nnnrneneees 4-22
Table 4-16. Config ReQISTer FIEIUS.uuuiiiiiiiiii e e 4-23
Table 4-17. BadPAddr RegiSter FIIUS........coii it 4-25
Table 4-18. Performance Counter Control Register Fieldsoccvviiieiieiiiiiiiiiee e 4-29
Table 4-19. Performance Counter Register O FieldsSccuvvvvvieiiiiiiiiiiie e 4-30
Table 4-20. Performance Counter Register 1 FieldsScc.uvvvvvieiiiiiiiiiiiiee e 4-30
Table 4-21. TagLo RegiSter FIEIASuuiiiiiiiiiiieieie et e e reeee s 4-32
Table 4-22. TagHi Register FIEldS. ... 4-32
Table 4-23. ErrorEPC ReQISIEN FI@IUocvviiiiiiiiiiiieie et 4-33
Table 5-1. EXCEPLON LEVEIS......ccoii ittt e e e s st e e e e e s s s nbaaeeeeens 5-2
Table 5-2. Exception Vectors for Level 1 @XCePUiONS.......c..uuuiiiiieiiiiiiiiiieeeee e seiiiieeee e sireeeee e 5-7
Table 5-3. Exception Vectors for Level 2 @XCePUONS.........uvuiiiiiiiiiiiiiiiiee e sreeee e 5-7
Table 5-4. Cause.EXCCOUE FIEIUoooiiiiei e 5-8
Table 5-5. CaAUSE.EXC2 FIEldooiiiiiiiieiiiee ettt 5-8
Table 5-6. Masking @XCEPLIONSiiuiiiiiiiiie et e e e e s e e e e e e e e s s s bt e e e e aaeessannnreeeeens 5-9
Table 5-7. EXCePLiON PriOMTY OFUEr.......cuiiiiiiiiiiiiiiiiie et e e e e e e e e e s snnsaaaeee s 5-10
Table 6-1 ProCeSSOI IMOUESouiiiiiiiiiie ettt e st e e st e e st e e e e s nreeeeaareeee e 6-6
TabIe 6-2. AUUIESS SPACE......ceiiie ittt e e e s e e e e e e s s s bbb ee e e aaeesssasbbaeeeaaeeesssbeeeeeeens 6-7
Table 6-3. USer MOUE SEOMENTSuviiiiiieeii ittt e et e e e e e e et e e e e e e e s s s aant e eeaaeessssnrreeeens 6-9
Table 6-4. Supervisor MOde SEGMENTScoiiiiiiiiiiiiee e e e e e e e e e e e s e anrreees 6-10
Table 6-5. Kernel MOUE SEOMENTSuuiiiiiiiiiiiiiiiieee ettt e e e e e e st e e e e e s s s baae e e e e e s s s s nnneneees 6-12
Table 6-6 TLB Page Coherency (C) Bit VAIUESuueiiiiiieeiiiiiiiiiiiiiee e e e e e e e 6-17
Table 6-7. TLB INSIIUCTIONScoiiiiiiiii ittt e e e e s e e s b e snre s 6-20
Table 7-1. Cache CONfIQUIATIONuuviiiiiie it e e e e s s s s bt e e e e e e e s s snnnreeeeens 7-2
Table 7-2. Cache Size and ACCESS BIlS........coiiiiiiiiiiiiiie e 7-5
Table 7-3. Data Cache LiNE STAESuiiiiiiiiie ettt e st e e e e s 7-6
Table 7-4. LRF Line Replacement AlgOrthmcouo oo 7-8
Table 7-5. Quadword Retrieved AdAress PA[S:4]......u e ittt ree e e 7-10
Table 7-6. UCAB CONfiQUIAtioN..........coicuiiie e ciiiie e s e e s e e e s e e e st e e e snnene e e s snnaeeaearees 7-14
Table 7-7. UCAB Size and ACCESS BItScciiuiiiiiiiiiiee ittt 7-14
Table 8-1. System Signal Naming CONVENTIONcccoviuireeiiiieeesiieeessieeeessireeesssreeeesnsneeesssssneeees 8-3
Table 8-2. BUS TranSACON TYPES ..veciiuiiieiiiiieeeitieeeesstieeeessstteeesssteeessssseeeessssaeeesssseeessnsseresssssseeenns 8-8
Table 8-3. CPU TranSfer SIZEcuuiii ittt e s s e e e e nnraeeesnnnaeee e 8-9
Table 8-4. BUS EFrOr EXCEPLIONScouuiiiiiieiiie e ettt e 8-25
Table 8-5. Operation TerminNation SEQUENCEcueiiiiie ittt et e saeeesieee e 8-26
Table 9-1. PCCR REQGISIEI BISciiiiiiiiii ittt 9-2
Table 9-2. Writing Performance Counters and Registers using MTCOcccovcveeiiieeeniiine e 9-3

Xiv

X
Tables m wisc”

TOSHIBA
Table 9-3. Reading Performance Counters and Registers using MFCO.........cccccovvviiiiiiiieeeennenn. 9-3
Table 9-4. Mnemonics to Access the Performance Counters and Registers............cooccvvvvivieeeeennnn. 9-3
Table 9-5. COUNLET BEVENLSoiiiiiiiiieiiee et e et e e eenbree e 9-6
Table 9-6. Definition of Data Cache MiSSccoiuiiiiiiiiiie e 9-7
Table 10-1. Floating-Point Control Register ASSIGNMENTS........coiiieiiiiiiiiiiiiee e 10-4
Table 10-2. FCRO FIEIAS ...c.ueiiiieiiesie ettt sttt nne s eneas 10-5
Table 10-3. Control/Status Register FIieldSuuiiiiiieiiie e 10-6
Table 10-4. Flush Values of Denormalized RESUILSccuviiiiiiiiiiiie e 10-7
Table 10-5. Rounding Mode Bit DECOTINGccuiiieiiiiiiiiiiiiiiei ettt e e e e e e e e e e e e e nanes 10-9

Table 10-6.

Equations for Calculating Values in Single and

Double-Precision Floating-Point FOrmMat.............eeviieiiiiiiiiiiee e 10-11
Table 10-7. Floating-Point Format Parameter ValUescccooiiiiiiiiiiiiie e 10-11
Table 10-8. Minimum and Maximum Floating-Point ValUESccccccevviiiiiiiiiiiiiieiee e 10-11
Table 10-9. Binary Fixed-Point FOrmat FIeldsccoooiiiiiiiiieiiiiieeeee e 10-12
Table 10-10. FPU Instruction Set (Optional): Load, Move and Store Instruction........................ 10-13
Table 10-11. FPU Instruction Set(Optional): Conversion INStruCtioN............coccvvvveerieeesiiciiiieeennn. 10-14
Table 10-12. FPU Instruction Set(Optional): Computational Instructioncccccceevvvvivvineennn. 10-14
Table 10-13. FPU Instruction Set(Optional): Compare and Branch Instructioncccc...... 10-15
Table 11-1. Default FPU EXCEPLON ACHONSuuuiiiiieeiiiiiiiiiieee e e ssiiireeee e e e e e s siereeee e e e s s s nneseeees 11-3
Table 11-2. FPU Exception-Causing CONAItIONScoviiuriiiiiiieeeeeiiiieeeee e e e e ssiiineeee e e e s s ssneseeees 11-4
Table 11-3. Values of OVerflow RESUITS............coiuiiiiiii e 11-7
Table 12-1. Classification of Branch and Jump INSFUCTIONcooviiiiiiiiiiieeiiieeee e 12-2
Table 12-2. Exception Vector AAAreSS COUESuuiiieiiiiiiiiiiiiiee ettt e e e et e e e e s e s sneeeees 12-6
Table 13-1. Set a new value into breakpoint regiStErSuuviiiiieiiiiiiiiiir e 13-4
Table 13-2. Get the value from breakpoint reQISIErScc.uvviiiiiie i 13-4
Table 13-3. BPC ReQISter FIEIUS........uuiiiiiiiie ittt e e e e e s nnraeeees 13-5
Table A-1. Symbols in Instruction Operation StateMENTScuvveeiiiiiiiiiiieiee e A-3
Table A-2. Coprocessor General Register ACCESS FUNCHIONScccvvviiiiiieeeiiiiiiiieeee e A-5
Table A-3. Load and StOre FUNCHONScoiiiiiiiiei ittt s e e A-6
Table A-4. AccessLength Specifications for Loads / STOreS.........covvvcuviiieiieeeiiiiiiiiieeeee e A-7
Table A-5. MISCellan@0US FUNCHIONScociiiiiiiiiiiiie et e e A-8
Table B-1. Quotient and RemMaiNder SIQNScuuuuiiiieeiiiiiiiiiieeie e e et ee e e e e e s ssnrrreeeeaee e s s snnsereees B-8
Table C-1. CACHE Instruction Op Field ENCOAINGccoviiiiiiiiiiiie e C-6
Table C-2. Data Tag Status Bit MOIfiCatIONScceviiiiiii i C-13
Table D-1. FPU Comparisons Without Special Operand EXCEPLiONS........ccccvevvviveeeeriiiineeessieeenan. D-9
Table D-2 FPU Comparisons With Special Operand Exceptions for QNaNsccccccccveevnnen. D-10

XV

X
TOSHIBA Tables m rise”

XVi

Handling Precautions

TOSHIBA 1 Using Toshiba Semiconductors Safely

1. Using Toshiba Semiconductors Safely

TOSHIBA is continually working to improve the quality and the reliability of its products.

Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent
electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when
utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a
malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or
damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified
operating ranges as set forth in the most recent products specifications. Also, please keep in mind
the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

1-1

TOSHIBA 1 Using Toshiba Semiconductors Safely

1-2

TOSHIBA 2 Safety Precautions

2. Safety Precautions

This section lists important precautions which users of semiconductor devices (and anyone else)
should observe in order to avoid injury and damage to property, and to ensure safe and correct use
of devices.

Please be sure that you understand the meanings of the labels and the graphic symbol described
below before you move on to the detailed descriptions of the precautions.

[Explanation of labels]
A DANGER Indicates an imminently hazardous situation which will result in death or
serious injury if you do not follow instructions.

AWARNING Indicates a potentially hazardous situation which could result in death or
serious injury if you do not follow instructions.

ACAUTION Indicates a potentially hazardous situation which if not avoided, may result
in minor injury or moderate injury.

[Explanation of graphic symbol]

Graphic symbol Meaning

A Indicates that caution is required (laser beam is dangerous to eyes).

2-1

TOSHIBA 2 Safety Precautions

2.1 General Precautions regarding Semiconductor Devices

ACAUTION

Do not use devices under conditions exceeding their absolute maximum ratings (e.g. current, voltage, power dissipation or
temperature).
This may cause the device to break down, degrade its performance, or cause it to catch fire or explode resulting in injury.

Do not insert devices in the wrong orientation.

Make sure that the positive and negative terminals of power supplies are connected correctly. Otherwise the rated maximum
current or power dissipation may be exceeded and the device may break down or undergo performance degradation, causing it to
catch fire or explode and resulting in injury.

When power to a device is on, do not touch the device’s heat sink.
Heat sinks become hot, so you may burn your hand.

Do not touch the tips of device leads.
Because some types of device have leads with pointed tips, you may prick your finger.

When conducting any kind of evaluation, inspection or testing, be sure to connect the testing equipment’s electrodes or probes to
the pins of the device under test before powering it on.
Otherwise, you may receive an electric shock causing injury.

Before grounding an item of measuring equipment or a soldering iron, check that there is no electrical leakage from it.
Electrical leakage may cause the device which you are testing or soldering to break down, or could give you an electric shock.

Always wear protective glasses when cutting the leads of a device with clippers or a similar tool.
If you do not, small bits of metal flying off the cut ends may damage your eyes.

TOSHIBA 2 Safety Precautions

2.2 Precautions Specific to Each Product Group

221 Optical semiconductor devices

When a visible semiconductor laser is operating, do not look directly into the laser beam or look through the optical system.
This is highly likely to impair vision, and in the worst case may cause blindness.

If it is necessary to examine the laser apparatus, for example to inspect its optical characteristics, always wear the appropriate
type of laser protective glasses as stipulated by IEC standard IEC825-1.

AWARNING

Ensure that the current flowing in an LED device does not exceed the device’s maximum rated current.
This is particularly important for resin-packaged LED devices, as excessive current may cause the package resin to blow up,
scattering resin fragments and causing injury.

When testing the dielectric strength of a photocoupler, use testing equipment which can shut off the supply voltage to the
photocoupler. If you detect a leakage current of more than 100 pA, use the testing equipment to shut off the photocoupler’s
supply voltage; otherwise a large short-circuit current will flow continuously, and the device may break down or burst into flames,
resulting in fire or injury.

When incorporating a visible semiconductor laser into a design, use the device’s internal photodetector or a separate
photodetector to stabilize the laser’s radiant power so as to ensure that laser beams exceeding the laser’s rated radiant power
cannot be emitted.

If this stabilizing mechanism does not work and the rated radiant power is exceeded, the device may break down or the
excessively powerful laser beams may cause injury.

2.2.2 Power devices

Never touch a power device while it is powered on. Also, after turning off a power device, do not touch it until it has thoroughly
discharged all remaining electrical charge.
Touching a power device while it is powered on or still charged could cause a severe electric shock, resulting in death or serious

injury.

When conducting any kind of evaluation, inspection or testing, be sure to connect the testing equipment’s electrodes or probes to
the device under test before powering it on.

When you have finished, discharge any electrical charge remaining in the device.

Connecting the electrodes or probes of testing equipment to a device while it is powered on may result in electric shock, causing

injury.

TOSHIBA 2 Safety Precautions

AWARNING

Do not use devices under conditions which exceed their absolute maximum ratings (current, voltage, power dissipation,
temperature etc.).

This may cause the device to break down, causing a large short-circuit current to flow, which may in turn cause it to catch fire or
explode, resulting in fire or injury.

Use a unit which can detect short-circuit currents and which will shut off the power supply if a short-circuit occurs.
If the power supply is not shut off, a large short-circuit current will flow continuously, which may in turn cause the device to catch
fire or explode, resulting in fire or injury.

When designing a case for enclosing your system, consider how best to protect the user from shrapnel in the event of the device
catching fire or exploding.
Flying shrapnel can cause injury.

When conducting any kind of evaluation, inspection or testing, always use protective safety tools such as a cover for the device.
Otherwise you may sustain injury caused by the device catching fire or exploding.

Make sure that all metal casings in your design are grounded to earth.

Even in modules where a device’s electrodes and metal casing are insulated, capacitance in the module may cause the
electrostatic potential in the casing to rise.

Dielectric breakdown may cause a high voltage to be applied to the casing, causing electric shock and injury to anyone touching it.

When designing the heat radiation and safety features of a system incorporating high-speed rectifiers, remember to take the
device’s forward and reverse losses into account.

The leakage current in these devices is greater than that in ordinary rectifiers; as a result, if a high-speed rectifier is used in an
extreme environment (e.g. at high temperature or high voltage), its reverse loss may increase, causing thermal runaway to occur.
This may in turn cause the device to explode and scatter shrapnel, resulting in injury to the user.

A design should ensure that, except when the main circuit of the device is active, reverse bias is applied to the device gate while
electricity is conducted to control circuits, so that the main circuit will become inactive.
Malfunction of the device may cause serious accidents or injuries.

ACAUTION

When conducting any kind of evaluation, inspection or testing, either wear protective gloves or wait until the device has cooled
properly before handling it.

Devices become hot when they are operated. Even after the power has been turned off, the device will retain residual heat which
may cause a burn to anyone touching it.

2.2.3 Bipolar ICs (for use in automobiles)

ACAUTION

If your design includes an inductive load such as a motor coil, incorporate diodes or similar devices into the design to prevent
negative current from flowing in.

The load current generated by powering the device on and off may cause it to function erratically or to break down, which could in
turn cause injury.

Ensure that the power supply to any device which incorporates protective functions is stable.
If the power supply is unstable, the device may operate erratically, preventing the protective functions from working correctly. If
protective functions fail, the device may break down causing injury to the user.

2-4

TOSHIBA 3 General Safety Precautions and Usage Considerations

3. General Safety Precautions and Usage Considerations

This section is designed to help you gain a better understanding of semiconductor devices, so as to
ensure the safety, quality and reliability of the devices which you incorporate into your designs.

3.1 From Incoming to Shipping

3.1.1 Electrostatic discharge (ESD)

When handling individual devices (which are not yet mounted on a printed
circuit board), be sure that the environment is protected against
electrostatic electricity. Operators should wear anti-static clothing, and
containers and other objects which come into direct contact with devices
should be made of anti-static materials and should be grounded to earth via
an 0.5- to 1.0-MQ protective resistor.

A

Please follow the precautions described below; this is particularly important
for devices which are marked “Be careful of static.”.

(1) Work environment

* When humidity in the working environment decreases, the human body and other insulators
can easily become charged with static electricity due to friction. Maintain the recommended
humidity of 40% to 60% in the work environment, while also taking into account the fact that
moisture-proof-packed products may absorb moisture after unpacking.

* Be sure that all equipment, jigs and tools in the working area are grounded to earth.

* Place a conductive mat over the floor of the work area, or take other appropriate measures, so
that the floor surface is protected against static electricity and is grounded to earth. The surface
resistivity should be 10* to 108 Q/sq and the resistance between surface and ground, 7.5 x 10° to
108 Q

¢ Cover the workbench surface also with a conductive mat (with a surface resistivity of 10* to
108 Q/sq, for a resistance between surface and ground of 7.5 x 10° to 108 Q) . The purpose of this
is to disperse static electricity on the surface (through resistive components) and ground it to
earth. Workbench surfaces must not be constructed of low-resistance metallic materials that
allow rapid static discharge when a charged device touches them directly.

* Pay attention to the following points when using automatic equipment in your workplace:

(@) When picking up ICs with a vacuum unit, use a conductive rubber fitting on the end of the
pick-up wand to protect against electrostatic charge.

(b) Minimize friction on IC package surfaces. If some rubbing is unavoidable due to the device's
mechanical structure, minimize the friction plane or use material with a small friction
coefficient and low electrical resistance. Also, consider the use of an ionizer.

(c) In sections which come into contact with device lead terminals, use a material which
dissipates static electricity.

(d) Ensure that no statically charged bodies (such as work clothes or the human body) touch
the devices.

TOSHIBA 3 General Safety Precautions and Usage Considerations

(e) Make sure that sections of the tape carrier which come into contact with installation
devices or other electrical machinery are made of a low-resistance material.

() Make sure that jigs and tools used in the assembly process do not touch devices.

(g) In processes in which packages may retain an electrostatic charge, use an ionizer to
neutralize the ions.

* Make sure that CRT displays in the working area are protected against static charge, for
example by a VDT filter. As much as possible, avoid turning displays on and off. Doing so can
cause electrostatic induction in devices.

* Keep track of charged potential in the working area by taking periodic measurements.

* Ensure that work chairs are protected by an anti-static textile cover and are grounded to the
floor surface by a grounding chain. (Suggested resistance between the seat surface and
grounding chain is 7.5 x 10° to 10%%Q.)

¢ Install anti-static mats on storage shelf surfaces. (Suggested surface resistivity is 10* to 108
Q/sq; suggested resistance between surface and ground is 7.5 x 10° to 10% Q.)

* For transport and temporary storage of devices, use containers (boxes, jigs or bags) that are
made of anti-static materials or materials which dissipate electrostatic charge.

* Make sure that cart surfaces which come into contact with device packaging are made of
materials which will conduct static electricity, and verify that they are grounded to the floor
surface via a grounding chain.

* In any location where the level of static electricity is to be closely controlled, the ground
resistance level should be Class 3 or above. Use different ground wires for all items of
equipment which may come into physical contact with devices.

(2) Operating environment

* Operators must wear anti-static clothing and conductive shoes (or
a leg or heel strap). l

* Operators must wear a wrist strap grounded to earth via a =
resistor of about 1 MQ.

* Soldering irons must be grounded from iron tip to earth, and must be used only at low voltages
(6 Vto24V).

* If the tweezers you use are likely to touch the device terminals, use anti-static tweezers and in
particular avoid metallic tweezers. If a charged device touches a low-resistance tool, rapid
discharge can occur. When using vacuum tweezers, attach a conductive chucking pat to the tip,
and connect it to a dedicated ground used especially for anti-static purposes (suggested
resistance value: 10* to 108 Q).

* Do not place devices or their containers near sources of strong electrical fields (such as above a
CRT).

3-2

TOSHIBA 3 General Safety Precautions and Usage Considerations

* When storing printed circuit boards which have devices mounted on them, use a board
container or bag that is protected against static charge. To avoid the occurrence of static charge
or discharge due to friction, keep the boards separate from one other and do not stack them
directly on top of one another.

* Ensure, if possible, that any articles (such as clipboards) which are brought to any location
where the level of static electricity must be closely controlled are constructed of anti-static
materials.

* In cases where the human body comes into direct contact with a device, be sure to wear anti-
static finger covers or gloves (suggested resistance value: 10® Q or less).

¢ Equipment safety covers installed near devices should have resistance ratings of 10° Q or less.

¢ If a wrist strap cannot be used for some reason, and there is a possibility of imparting friction to
devices, use an ionizer.

* The transport film used in TCP products is manufactured from materials in which static
charges tend to build up. When using these products, install an ionizer to prevent the film from
being charged with static electricity. Also, ensure that no static electricity will be applied to the
product’s copper foils by taking measures to prevent static occuring in the peripheral
equipment.

3.1.2 Vibration, impact and stress

Handle devices and packaging materials with care. To avoid damage

to devices, do not toss or drop packages. Ensure that devices are not

subjected to mechanical vibration or shock during transportation.

Ceramic package devices and devices in canister-type packages which .
have empty space inside them are subject to damage from vibration

and shock because the bonding wires are secured only at their ends. /\M\

N

Plastic molded devices, on the other hand, have a relatively high level

of resistance to vibration and mechanical shock because their bonding

wires are enveloped and fixed in resin. However, when any device or package type is installed in
target equipment, it is to some extent susceptible to wiring disconnections and other damage from
vibration, shock and stressed solder junctions. Therefore when devices are incorporated into the
design of equipment which will be subject to vibration, the structural design of the equipment
must be thought out carefully.

If a device is subjected to especially strong vibration, mechanical shock or stress, the package or
the chip itself may crack. In products such as CCDs which incorporate window glass, this could
cause surface flaws in the glass or cause the connection between the glass and the ceramic to
separate.

Furthermore, it is known that stress applied to a semiconductor device through the package
changes the resistance characteristics of the chip because of piezoelectric effects. In analog circuit
design attention must be paid to the problem of package stress as well as to the dangers of
vibration and shock as described above.

3-3

TOSHIBA 3 General Safety Precautions and Usage Considerations

3.2 Storage

3.2.1 General storage

* Avoid storage locations where devices will be exposed to moisture or direct sunlight.

* Follow the instructions printed on the device cartons regarding
transportation and storage.

* The storage area temperature should be kept within a
temperature range of 5°C to 35°C, and relative humidity should
be maintained at between 45% and 75%.

* Do not store devices in the presence of harmful (especially
corrosive) gases, or in dusty conditions. g

* Use storage areas where there is minimal temperature fluctuation. Rapid temperature changes
can cause moisture to form on stored devices, resulting in lead oxidation or corrosion. As a result,
the solderability of the leads will be degraded.

* When repacking devices, use anti-static containers.
* Do not allow external forces or loads to be applied to devices while they are in storage.

¢ If devices have been stored for more than two years, their electrical characteristics should be
tested and their leads should be tested for ease of soldering before they are used.

3.2.2 Moisture-proof packing

Moisture-proof packing should be handled with care. The handling
procedure specified for each packing type should be followed scrupulously.
If the proper procedures are not followed, the quality and reliability of
devices may be degraded. This section describes general precautions for
handling moisture-proof packing. Since the details may differ from device
to device, refer also to the relevant individual datasheets or databook.

(1) General precautions

Follow the instructions printed on the device cartons regarding transportation and storage.

* Do not drop or toss device packing. The laminated aluminum material in it can be rendered
ineffective by rough handling.

* The storage area temperature should be kept within a temperature range of 5°C to 30°C, and
relative humidity should be maintained at 90% (max). Use devices within 12 months of the date
marked on the package seal.

TOSHIBA 3 General Safety Precautions and Usage Considerations

* If the 12-month storage period has expired, or if the 30% humidity indicator shown in Figure 1
is pink when the packing is opened, it may be advisable, depending on the device and packing
type, to back the devices at high temperature to remove any moisture. Please refer to the table
below. After the pack has been opened, use the devices in a 5°C to 30°C. 60% RH environment
and within the effective usage period listed on the moisture-proof package. If the effective usage
period has expired, or if the packing has been stored in a high-humidity environment, back the
devices at high temperature.

Packing Moisture removal
Tray If the packing bears the “Heatproof” marking or indicates the maximum temperature which it can
withstand, bake at 125°C for 20 hours. (Some devices require a different procedure.)
Tube Transfer devices to trays bearing the “Heatproof” marking or indicating the temperature which they

can withstand, or to aluminum tubes before baking at 125°C for 20 hours.

Tape Deviced packed on tape cannot be baked and must be used within the effective usage period after
unpacking, as specified on the packing.

* When baking devices, protect the devices from static electricity.

* Moisture indicators can detect the approximate humidity level at a standard temperature of
25°C. 6-point indicators and 3-point indicators are currently in use, but eventually all indicators
will be 3-point indicators.

HUMIDITY INDICATOR

60%

50%

0,
40% O E HUMIDITY INDICATOR
X
23
z0
L9
30% o
i
oy «
Zz z
5% 5
T w
20% o E
w
o
=z
<
a
READ AT LAVENDER READ AT LAVENDER
BETWEEN PINK & BLUE BETWEEN PINK & BLUE
(a) 6-point indicator (b) 3-point indicator

Figure 1 Humidity indicator

3-5

TOSHIBA 3 General Safety Precautions and Usage Considerations

3.3

3.3.1

3.3.2

3.3.3

3.34

Design

Care must be exercised in the design of electronic equipment to achieve the desired reliability. It is
important not only to adhere to specifications concerning absolute maximum ratings and
recommended operating conditions, it is also important to consider the overall environment in
which equipment will be used, including factors such as the ambient temperature, transient noise
and voltage and current surges, as well as mounting conditions which affect device reliability. This
section describes some general precautions which you should observe when designing circuits and
when mounting devices on printed circuit boards.

For more detailed information about each product family, refer to the relevant individual technical
datasheets available from Toshiba.

Absolute maximum ratings

Do not use devices under conditions in which their absolute maximum ratings

ACAUT'ON (e.g: current, voltage, power dissipation or temperature) will be ex_cee(_jed. A
device may break down or its performance may be degraded, causing it to
catch fire or explode resulting in injury to the user.

The absolute maximum ratings are rated values which must not be
exceeded during operation, even for an instant. Although absolute
maximum ratings differ from product to product, they essentially
concern the voltage and current at each pin, the allowable power
dissipation, and the junction and storage temperatures.

If the voltage or current on any pin exceeds the absolute maximum
rating, the device’s internal circuitry can become degraded. In the worst
case, heat generated in internal circuitry can fuse wiring or cause the semiconductor chip to break
down.

If storage or operating temperatures exceed rated values, the package seal can deteriorate or the
wires can become disconnected due to the differences between the thermal expansion coefficients
of the materials from which the device is constructed.

Recommended operating conditions

The recommended operating conditions for each device are those necessary to guarantee that the
device will operate as specified in the datasheet.

If greater reliability is required, derate the device’s absolute maximum ratings for voltage, current,
power and temperature before using it.

Derating

When incorporating a device into your design, reduce its rated absolute maximum voltage, current,
power dissipation and operating temperature in order to ensure high reliability.

Since derating differs from application to application, refer to the technical datasheets available
for the various devices used in your design.

Unused pins

If unused pins are left open, some devices can exhibit input instability problems, resulting in
malfunctions such as abrupt increase in current flow. Similarly, if the unused output pins on a
device are connected to the power supply pin, the ground pin or to other output pins, the IC may
malfunction or break down.

3-6

TOSHIBA 3 General Safety Precautions and Usage Considerations

3.3.5

3.3.6

3.3.7

Since the details regarding the handling of unused pins differ from device to device and from pin
to pin, please follow the instructions given in the relevant individual datasheets or databook.

CMOS logic IC inputs, for example, have extremely high impedance. If an input pin is left open, it
can easily pick up extraneous noise and become unstable. In this case, if the input voltage level
reaches an intermediate level, it is possible that both the P-channel and N-channel transistors
will be turned on, allowing unwanted supply current to flow. Therefore, ensure that the unused
input pins of a device are connected to the power supply (Vcc) pin or ground (GND) pin of the same
device. For details of what to do with the pins of heat sinks, refer to the relevant technical
datasheet and databook.

Latch-up

Latch-up is an abnormal condition inherent in CMOS devices, in which Vcc gets shorted to ground.
This happens when a parasitic PN-PN junction (thyristor structure) internal to the CMOS chip is
turned on, causing a large current of the order of several hundred mA or more to flow between Vcc
and GND, eventually causing the device to break down.

Latch-up occurs when the input or output voltage exceeds the rated value, causing a large current
to flow in the internal chip, or when the voltage on the Vcc (Vdd) pin exceeds its rated value,
forcing the internal chip into a breakdown condition. Once the chip falls into the latch-up state,
even though the excess voltage may have been applied only for an instant, the large current
continues to flow between Vcc (Vdd) and GND (Vss). This causes the device to heat up and, in
extreme cases, to emit gas fumes as well. To avoid this problem, observe the following precautions:

(1) Do not allow voltage levels on the input and output pins either to rise above Vcc (Vdd) or to
fall below GND (Vss). Also, follow any prescribed power-on sequence, so that power is applied
gradually or in steps rather than abruptly.

(2) Do not allow any abnormal noise signals to be applied to the device.
(3) Set the voltage levels of unused input pins to Vcc (Vdd) or GND (Vss).

(4) Do not connect output pins to one another.

Input/Output protection

Wired-AND configurations, in which outputs are connected together, cannot be used, since this
short-circuits the outputs. Outputs should, of course, never be connected to Vcc (Vdd) or GND
(Vss).

Furthermore, 1Cs with tri-state outputs can undergo performance degradation if a shorted output
current is allowed to flow for an extended period of time. Therefore, when designing circuits, make
sure that tri-state outputs will not be enabled simultaneously.

Load capacitance

Some devices display increased delay times if the load capacitance is large. Also, large charging
and discharging currents will flow in the device, causing noise. Furthermore, since outputs are
shorted for a relatively long time, wiring can become fused.

Consult the technical information for the device being used to determine the recommended load
capacitance.

TOSHIBA 3 General Safety Precautions and Usage Considerations

3.3.8 Thermal design

The failure rate of semiconductor devices is greatly increased as operating temperatures increase.
As shown in Figure 2, the internal thermal stress on a device is the sum of the ambient
temperature and the temperature rise due to power dissipation in the device. Therefore, to
achieve optimum reliability, observe the following precautions concerning thermal design:

(1) Keep the ambient temperature (Ta) as low as possible.

(2) If the device’'s dynamic power dissipation is relatively large, select the most appropriate
circuit board material, and consider the use of heat sinks or of forced air cooling. Such
measures will help lower the thermal resistance of the package.

(3) Derate the device's absolute maximum ratings to minimize thermal stress from power
dissipation.
Bja = Bjc + Bca
Bja=(Tj-Ta)/ P
Bjc = (Tj-Tc) /P
Oca = (Tc-Ta)/ P
in which 6ja = thermal resistance between junction and surrounding air (°C/W)
Bjc = thermal resistance between junction and package surface, or internal thermal
resistance (°C/W)
Bca = thermal resistance between package surface and surrounding air, or external
thermal resistance (°C/W)
Tj = junction temperature or chip temperature (°C)
Tc = package surface temperature or case temperature (°C)
Ta = ambient temperature (°C)
P = power dissipation (W)

Ta

Tc

Figure 2 Thermal resistance of package

3.3.9 Interfacing

When connecting inputs and outputs between devices, make sure input voltage (VIL/VIH) and
output voltage (VoL/VOH) levels are matched. Otherwise, the devices may malfunction. When
connecting devices operating at different supply voltages, such as in a dual-power-supply system,
be aware that erroneous power-on and power-off sequences can result in device breakdown. For
details of how to interface particular devices, consult the relevant technical datasheets and
databooks. If you have any questions or doubts about interfacing, contact your nearest Toshiba
office or distributor.

3-8

TOSHIBA 3 General Safety Precautions and Usage Considerations

3.3.10 Decoupling

Spike currents generated during switching can cause Vcc (Vdd) and GND (Vss) voltage levels to
fluctuate, causing ringing in the output waveform or a delay in response speed. (The power supply
and GND wiring impedance is normally 50 Q to 100 Q.) For this reason, the impedance of power
supply lines with respect to high frequencies must be kept low. This can be accomplished by using
thick and short wiring for the Vcc (Vdd) and GND (Vss) lines and by installing decoupling
capacitors (of approximately 0.01 pF to 1 puF capacitance) as high-frequency filters between Vcc
(Vdd) and GND (Vss) at strategic locations on the printed circuit board.

For low-frequency filtering, it is a good idea to install a 10- to 100-pF capacitor on the printed
circuit board (one capacitor will suffice). If the capacitance is excessively large, however, (e.g.

several thousand pF) latch-up can be a problem. Be sure to choose an appropriate capacitance
value.

An important point about wiring is that, in the case of high-speed logic ICs, noise is caused mainly
by reflection and crosstalk, or by the power supply impedance. Reflections cause increased signal
delay, ringing, overshoot and undershoot, thereby reducing the device’s safety margins with
respect to noise. To prevent reflections, reduce the wiring length by increasing the device
mounting density so as to lower the inductance (L) and capacitance (C) in the wiring. Extreme
care must be taken, however, when taking this corrective measure, since it tends to cause
crosstalk between the wires. In practice, there must be a trade-off between these two factors.

3.3.11 External noise

Printed circuit boards with long 1/O or signal pattern lines are
vulnerable to induced noise or surges from outside sources.
Consequently, malfunctions or breakdowns can result from
overcurrent or overvoltage, depending on the types of device
used. To protect against noise, lower the impedance of the
pattern line or insert a noise-canceling circuit. Protective
measures must also be taken against surges.

Jnput/Output
Signals v
For details of the appropriate protective measures for a

particular device, consult the relevant databook.

3.3.12 Electromagnetic interference

Widespread use of electrical and electronic equipment in recent years has brought with it radio
and TV reception problems due to electromagnetic interference. To use the radio spectrum
effectively and to maintain radio communications quality, each country has formulated
regulations limiting the amount of electromagnetic interference which can be generated by
individual products.

Electromagnetic interference includes conduction noise propagated through power supply and
telephone lines, and noise from direct electromagnetic waves radiated by equipment. Different
measurement methods and corrective measures are used to assess and counteract each specific
type of noise.

Difficulties in controlling electromagnetic interference derive from the fact that there is no
method available which allows designers to calculate, at the design stage, the strength of the
electromagnetic waves which will emanate from each component in a piece of equipment. For this
reason, it is only after the prototype equipment has been completed that the designer can take
measurements using a dedicated instrument to determine the strength of electromagnetic
interference waves. Yet it is possible during system design to incorporate some measures for the
prevention of electromagnetic interference, which can facilitate taking corrective measures once
the design has been completed. These include installing shields and noise filters, and increasing

3-9

TOSHIBA 3 General Safety Precautions and Usage Considerations

the thickness of the power supply wiring patterns on the printed circuit board. One effective
method, for example, is to devise several shielding options during design, and then select the most
suitable shielding method based on the results of measurements taken after the prototype has
been completed.

3.3.13 Peripheral circuits

In most cases semiconductor devices are used with peripheral circuits and components. The input
and output signal voltages and currents in these circuits must be chosen to match the
semiconductor device’s specifications. The following factors must be taken into account.

(1) Inappropriate voltages or currents applied to a device’s input pins may cause it to operate
erratically. Some devices contain pull-up or pull-down resistors. When designing your system,
remember to take the effect of this on the voltage and current levels into account.

(2) The output pins on a device have a predetermined external circuit drive capability. If this
drive capability is greater than that required, either incorporate a compensating circuit into
your design or carefully select suitable components for use in external circuits.

3.3.14 Safety standards

Each country has safety standards which must be observed. These safety standards include
requirements for quality assurance systems and design of device insulation. Such requirements
must be fully taken into account to ensure that your design conforms to the applicable safety
standards.

3.3.15 Other precautions

(1) When designing a system, be sure to incorporate fail-safe and other appropriate measures
according to the intended purpose of your system. Also, be sure to debug your system under
actual board-mounted conditions.

(2) If aplastic-package device is placed in a strong electric field, surface leakage may occur due to
the charge-up phenomenon, resulting in device malfunction. In such cases take appropriate
measures to prevent this problem, for example by protecting the package surface with a
conductive shield.

(3) With some microcomputers and MOS memory devices, caution is required when powering on
or resetting the device. To ensure that your design does not violate device specifications,
consult the relevant databook for each constituent device.

(4) Ensure that no conductive material or object (such as a metal pin) can drop onto and short the
leads of a device mounted on a printed circuit board.

3.4 Inspection, Testing and Evaluation

3.4.1 Grounding

Ground all measuring instruments, jigs, tools and soldering irons to earth.
AACAUTION Electrical leakage may cause a device to break down or may result in electric
shock.

3-10

TOSHIBA 3 General Safety Precautions and Usage Considerations

3.4.2

3.5

3.5.1

Inspection Sequence

@ Do not insert devices in the wrong orientation. Make sure that the positive
AACAUTION and negative electrodes of the power supply are correctly connected.
Otherwise, the rated maximum current or maximum power dissipation
may be exceeded and the device may break down or undergo performance
degradation, causing it to catch fire or explode, resulting in injury to the
user.

@ When conducting any kind of evaluation, inspection or testing using AC
power with a peak voltage of 42.4 V or DC power exceeding 60 V, be sure to
connect the electrodes or probes of the testing equipment to the device
under test before powering it on. Connecting the electrodes or probes of
testing equipment to a device while it is powered on may result in electric
shock, causing injury.

(1) Apply voltage to the test jig only after inserting the device securely into it. When applying or
removing power, observe the relevant precautions, if any.

(2) Make sure that the voltage applied to the device is off before removing the device from the
test jig. Otherwise, the device may undergo performance degradation or be destroyed.

(3) Make sure that no surge voltages from the measuring equipment are applied to the device.

(4) The chips housed in tape carrier packages (TCPs) are bare chips and are therefore exposed.
During inspection take care not to crack the chip or cause any flaws in it.
Electrical contact may also cause a chip to become faulty. Therefore make sure that nothing
comes into electrical contact with the chip.

Mounting

There are essentially two main types of semiconductor device package: lead insertion and surface
mount. During mounting on printed circuit boards, devices can become contaminated by flux or
damaged by thermal stress from the soldering process. With surface-mount devices in particular,
the most significant problem is thermal stress from solder reflow, when the entire package is
subjected to heat. This section describes a recommended temperature profile for each mounting
method, as well as general precautions which you should take when mounting devices on printed
circuit boards. Note, however, that even for devices with the same package type, the appropriate
mounting method varies according to the size of the chip and the size and shape of the lead frame.
Therefore, please consult the relevant technical datasheet and databook.

Lead forming

@ Always wear protective glasses when cutting the leads of a device with
clippers or a similar tool. If you do not, small bits of metal flying off the cut
JAACAUTION ends may damage your eyes.
@ Do not touch the tips of device leads. Because some types of device have
leads with pointed tips, you may prick your finger.

Semiconductor devices must undergo a process in which the leads are cut and formed before the
devices can be mounted on a printed circuit board. If undue stress is applied to the interior of a
device during this process, mechanical breakdown or performance degradation can result. This is
attributable primarily to differences between the stress on the device’s external leads and the
stress on the internal leads. If the relative difference is great enough, the device’s internal leads,
adhesive properties or sealant can be damaged. Observe these precautions during the lead-
forming process (this does not apply to surface-mount devices):

3-11

TOSHIBA 3 General Safety Precautions and Usage Considerations

3.5.2

3.5.3

(1) Lead insertion hole intervals on the printed circuit board should match the lead pitch of the
device precisely.

(2) If lead insertion hole intervals on the printed circuit board do not precisely match the lead
pitch of the device, do not attempt to forcibly insert devices by pressing on them or by pulling
on their leads.

(3) For the minimum clearance specification between a device and a
printed circuit board, refer to the relevant device's datasheet and
databook. If necessary, achieve the required clearance by forming
the device’s leads appropriately. Do not use the spacers which are
used to raise devices above the surface of the printed circuit board
during soldering to achieve clearance. These spacers normally
continue to expand due to heat, even after the solder has begun to solidify; this applies severe
stress to the device.

(4) Observe the following precautions when forming the leads of a device prior to mounting.

* Use a tool or jig to secure the lead at its base (where the lead meets the device package) while
bending so as to avoid mechanical stress to the device. Also avoid bending or stretching device
leads repeatedly.

* Be careful not to damage the lead during lead forming.

* Follow any other precautions described in the individual datasheets and databooks for each
device and package type.

Socket mounting

(1) When socket mounting devices on a printed circuit board, use sockets which match the
inserted device’s package.

(2) Use sockets whose contacts have the appropriate contact pressure. If the contact pressure is
insufficient, the socket may not make a perfect contact when the device is repeatedly inserted
and removed; if the pressure is excessively high, the device leads may be bent or damaged
when they are inserted into or removed from the socket.

(3) When soldering sockets to the printed circuit board, use sockets whose construction prevents
flux from penetrating into the contacts or which allows flux to be completely cleaned off.

(4) Make sure the coating agent applied to the printed circuit board for moisture-proofing
purposes does not stick to the socket contacts.

(5) If the device leads are severely bent by a socket as it is inserted or removed and you wish to
repair the leads so as to continue using the device, make sure that this lead correction is only
performed once. Do not use devices whose leads have been corrected more than once.

(6) If the printed circuit board with the devices mounted on it will be subjected to vibration from
external sources, use sockets which have a strong contact pressure so as to prevent the
sockets and devices from vibrating relative to one another.

Soldering temperature profile

The soldering temperature and heating time vary from device to device. Therefore, when
specifying the mounting conditions, refer to the individual datasheets and databooks for the
devices used.

3-12

TOSHIBA 3 General Safety Precautions and Usage Considerations

(1) Using a soldering iron

Complete soldering within ten seconds for lead temperatures of up to 260°C, or within three
seconds for lead temperatures of up to 350°C.

(2) Using medium infrared ray reflow

* Heating top and bottom with long or medium infrared rays is recommended (see Figure 3).

Medium infrared ray heater

(reflow)
Producf flow | |* fl | T7 vv

N4

Long infrared ray heater (preheating)

Figure 3 Heating top and bottom with long or medium infrared rays

* Complete the infrared ray reflow process within 30 seconds at a package surface temperature of
between 210°C and 240°C.

* Refer to Figure 4 for an example of a good temperature profile for infrared or hot air reflow.

(°C)
240

210

Package surface temperature

160
140 - . . :
T — R
60-120 : 130 :
seconds . :seconds :

or less

Time (in seconds)
Figure 4 Sample temperature profile for infrared or hot air reflow
(3) Using hot air reflow

* Complete hot air reflow within 30 seconds at a package surface temperature of between 210°C
and 240°C.

* For an example of a recommended temperature profile, refer to Figure 4 above.
(4) Using solder flow
* Apply preheating for 60 to 120 seconds at a temperature of 150°C.

* For lead insertion-type packages, complete solder flow within 10 seconds with the
temperature at the stopper (or, if there is no stopper, at a location more than 1.5 mm from
the body) which does not exceed 260°C.

3-13

TOSHIBA 3 General Safety Precautions and Usage Considerations

354

* For surface-mount packages, complete soldering within 5 seconds at a temperature of 250°C or
less in order to prevent thermal stress in the device.

* Figure 5 shows an example of a recommended temperature profile for surface-mount packages
using solder flow.

1)

(2)

(3)

(4)

(5)

(°C)
250

Package surface temperature

J)
(8

s o
60-120 seconds : 5 seconds
or less

P
h

Time (in seconds)

Figure 5 Sample temperature profile for solder flow

Flux cleaning and ultrasonic cleaning

When cleaning circuit boards to remove flux, make sure that no residual reactive ions such as
Na or Cl remain. Note that organic solvents react with water to generate hydrogen chloride
and other corrosive gases which can degrade device performance.

Washing devices with water will not cause any problems. However, make sure that no
reactive ions such as sodium and chlorine are left as a residue. Also, be sure to dry devices
sufficiently after washing.

Do not rub device markings with a brush or with your hand during cleaning or while the
devices are still wet from the cleaning agent. Doing so can rub off the markings.

The dip cleaning, shower cleaning and steam cleaning processes all involve the chemical
action of a solvent. Use only recommended solvents for these cleaning methods. When
immersing devices in a solvent or steam bath, make sure that the temperature of the liquid is
50°C or below, and that the circuit board is removed from the bath within one minute.

Ultrasonic cleaning should not be used with hermetically-sealed ceramic packages such as a
leadless chip carrier (LCC), pin grid array (PGA) or charge-coupled device (CCD), because the
bonding wires can become disconnected due to resonance during the cleaning process. Even if
a device package allows ultrasonic cleaning, limit the duration of ultrasonic cleaning to as
short a time as possible, since long hours of ultrasonic cleaning degrade the adhesion between
the mold resin and the frame material. The following ultrasonic cleaning conditions are
recommended:

Frequency: 27 kHz 029 kHz
Ultrasonic output power: 300 W or less (0.25 W/cm? or less)
Cleaning time: 30 seconds or less

Suspend the circuit board in the solvent bath during ultrasonic cleaning in such a way that
the ultrasonic vibrator does not come into direct contact with the circuit board or the device.

3-14

TOSHIBA 3 General Safety Precautions and Usage Considerations

3.5.5

3.5.6

3.5.7

No cleaning

If analog devices or high-speed devices are used without being cleaned, flux residues may cause
minute amounts of leakage between pins. Similarly, dew condensation, which occurs in
environments containing residual chlorine when power to the device is on, may cause between-
lead leakage or migration. Therefore, Toshiba recommends that these devices be cleaned.
However, if the flux used contains only a small amount of halogen (0.05W% or less), the devices
may be used without cleaning without any problems.

1)

(2)

(3)

(4)
(5)

(6)

Mounting tape carrier packages (TCPs)

When tape carrier packages (TCPs) are mounted, measures must be taken to prevent
electrostatic breakdown of the devices.

If devices are being picked up from tape, or outer lead bonding (OLB) mounting is being
carried out, consult the manufacturer of the insertion machine which is being used, in order
to establish the optimum mounting conditions in advance and to avoid any possible hazards.

The base film, which is made of polyimide, is hard and thin. Be careful not to cut or scratch
your hands or any objects while handling the tape.

When punching tape, try not to scatter broken pieces of tape too much.

Treat the extra film, reels and spacers left after punching as industrial waste, taking care not
to destroy or pollute the environment.

Chips housed in tape carrier packages (TCPs) are bare chips and therefore have their reverse
side exposed. To ensure that the chip will not be cracked during mounting, ensure that no
mechanical shock is applied to the reverse side of the chip. Electrical contact may also cause a
chip to fail. Therefore, when mounting devices, make sure that nothing comes into electrical
contact with the reverse side of the chip.

If your design requires connecting the reverse side of the chip to the circuit board, please
consult Toshiba or a Toshiba distributor beforehand.

Mounting chips

Devices delivered in chip form tend to degrade or break under external forces much more easily
than plastic-packaged devices. Therefore, caution is required when handling this type of device.

(1)

(2)

3)

(4)

Mount devices in a properly prepared environment so that chip surfaces will not be exposed to
polluted ambient air or other polluted substances.

When handling chips, be careful not to expose them to static electricity.

In particular, measures must be taken to prevent static damage during the mounting of chips.
With this in mind, Toshiba recommend mounting all peripheral parts first and then mounting
chips last (after all other components have been mounted).

Make sure that PCBs (or any other kind of circuit board) on which chips are being mounted do
not have any chemical residues on them (such as the chemicals which were used for etching
the PCBs).

When mounting chips on a board, use the method of assembly that is most suitable for
maintaining the appropriate electrical, thermal and mechanical properties of the
semiconductor devices used.

* For details of devices in chip form, refer to the relevant device’s individual datasheets.

3-15

TOSHIBA 3 General Safety Precautions and Usage Considerations

3.5.8 Circuit board coating

When devices are to be used in equipment requiring a high degree of reliability or in extreme
environments (where moisture, corrosive gas or dust is present), circuit boards may be coated for
protection. However, before doing so, you must carefully consider the possible stress and
contamination effects that may result and then choose the coating resin which results in the
minimum level of stress to the device.

3.5.9 Heat sinks

(1) When attaching a heat sink to a device, be careful not to apply excessive force to the device in
the process.

(2) When attaching a device to a heat sink by fixing it at two or more locations, evenly tighten all
the screws in stages (i.e. do not fully tighten one screw while the rest are still only loosely
tightened). Finally, fully tighten all the screws up to the specified torque.

(3) Drill holes for screws in the heat sink exactly as specified. Smooth the
surface by removing burrs and protrusions or indentations which might
interfere with the installation of any part of the device.

(4) A coating of silicone compound can be applied between the heat sink and
the device to improve heat conductivity. Be sure to apply the coating
thinly and evenly; do not use too much. Also, be sure to use a non-volatile
compound, as volatile compounds can crack after a time, causing the heat
radiation properties of the heat sink to deteriorate.

(5) If the device is housed in a plastic package, use caution when selecting the type of silicone
compound to be applied between the heat sink and the device. With some types, the base oil
separates and penetrates the plastic package, significantly reducing the useful life of the
device.

Two recommended silicone compounds in which base oil separation is not a problem are
YG6260 from Toshiba Silicone.

(6) Heat-sink-equipped devices can become very hot during operation. Do not touch them, or you

may sustain a burn.

3.5.10 Tightening torque

(1) Make sure the screws are tightened with fastening torques not exceeding the torque values
stipulated in individual datasheets and databooks for the devices used.

(2) Do not allow a power screwdriver (electrical or air-driven) to touch devices.

3.5.11 Repeated device mounting and usage

Do not remount or re-use devices which fall into the categories listed below; these devices may
cause significant problems relating to performance and reliability.

(1) Devices which have been removed from the board after soldering

(2) Devices which have been inserted in the wrong orientation or which have had reverse current
applied

(3) Devices which have undergone lead forming more than once

3-16

TOSHIBA 3 General Safety Precautions and Usage Considerations

3.6 Protecting Devices in the Field

3.6.1 Temperature

Semiconductor devices are generally more sensitive to temperature than are other electronic
components. The various electrical characteristics of a semiconductor device are dependent on the
ambient temperature at which the device is used. It is therefore necessary to understand the
temperature characteristics of a device and to incorporate device derating into circuit design. Note
also that if a device is used above its maximum temperature rating, device deterioration is more
rapid and it will reach the end of its usable life sooner than expected.

3.6.2 Humidity

Resin-molded devices are sometimes improperly sealed. When these devices are used for an
extended period of time in a high-humidity environment, moisture can penetrate into the device
and cause chip degradation or malfunction. Furthermore, when devices are mounted on a regular
printed circuit board, the impedance between wiring components can decrease under high-
humidity conditions. In systems which require a high signal-source impedance, circuit board
leakage or leakage between device lead pins can cause malfunctions. The application of a
moisture-proof treatment to the device surface should be considered in this case. On the other
hand, operation under low-humidity conditions can damage a device due to the occurrence of
electrostatic discharge. Unless damp-proofing measures have been specifically taken, use devices
only in environments with appropriate ambient moisture levels (i.e. within a relative humidity
range of 40% to 60%).

3.6.3 Corrosive gases

Corrosive gases can cause chemical reactions in devices, degrading device characteristics.

For example, sulphur-bearing corrosive gases emanating from rubber placed near a device
(accompanied by condensation under high-humidity conditions) can corrode a device’s leads. The
resulting chemical reaction between leads forms foreign particles which can cause electrical
leakage.

3.64 Radioactive and cosmic rays

Most industrial and consumer semiconductor devices are not designed with protection against
radioactive and cosmic rays. Devices used in aerospace equipment or in radioactive environments
must therefore be shielded.

3.6.5 Strong electrical and magnetic fields

Devices exposed to strong magnetic fields can undergo a polarization phenomenon in their

plastic material, or within the chip, which gives rise to abnormal symptoms such as impedance
changes or increased leakage current. Failures have been reported in LSIs mounted near
malfunctioning deflection yokes in TV sets. In such cases the device’s installation location must be
changed or the device must be shielded against the electrical or magnetic field. Shielding against
magnetism is especially necessary for devices used in an alternating magnetic field because of the
electromotive forces generated in this type of environment.

3-17

TOSHIBA 3 General Safety Precautions and Usage Considerations

3.6.6

3.6.7

3.6.8

3.7

Interference from light (ultraviolet rays, sunlight, fluorescent lamps and
incandescent lamps)

Light striking a semiconductor device generates electromotive force due to photoelectric effects. In
some cases the device can malfunction. This is especially true for devices in which the internal
chip is exposed. When designing circuits, make sure that devices are protected against incident
light from external sources. This problem is not limited to optical semiconductors and EPROMSs.
All types of device can be affected by light.

Dust and oil

Just like corrosive gases, dust and oil can cause chemical reactions in devices, which will
adversely affect a device’s electrical characteristics. To avoid this problem, do not use devices in
dusty or oily environments. This is especially important for optical devices because dust and oil
can affect a device’s optical characteristics as well as its physical integrity and the electrical
performance factors mentioned above.

Fire

Semiconductor devices are combustible; they can emit smoke and catch fire if heated sufficiently.
When this happens, some devices may generate poisonous gases. Devices should therefore never
be used in close proximity to an open flame or a heat-generating body, or near flammable or
combustible materials.

Disposal of devices and packing materials

When discarding unused devices and packing materials, follow all procedures specified by local
regulations in order to protect the environment against contamination.

3-18

TOSHIBA 4 Precautions and Usage Considerations

4.1

41.1

Precautions and Usage Considerations

This section describes matters specific to each product group which need to be taken into
consideration when using devices. If the same item is described in Sections 3 and 4, the
description in Section 4 takes precedence.

Microcontrollers

Design

(1) Using resonators which are not specifically recommended for use

Resonators recommended for use with Toshiba products in microcontroller oscillator applications
are listed in Toshiba databooks along with information about oscillation conditions. If you use a
resonator not included in this list, please consult Toshiba or the resonator manufacturer
concerning the suitability of the device for your application.

(2) Undefined functions

In some microcontrollers certain instruction code values do not constitute valid processor
instructions. Also, it is possible that the values of bits in registers will become undefined. Take
care in your applications not to use invalid instructions or to let register bit values become
undefined.

TOSHIBA 4 Precautions and Usage Considerations

4-2

X
TOSHIBA Chapter 1 Introduction mﬁﬁtcem

1. Introduction

This user’'s manual describes the C790 superscalar microprocessor for the system designer,
paying special attention to the software interface and the bus interface.

The C790 is a superscalar integrated implementation of the subset of the 64-bit MIPS IV
Instruction Set Architecture. It also implements a large extension to this instruction set
specially tailored for multimedia applications. It contains a CPU, a floating point
execution unit (Coprocessor 1), primary instruction and data caches.

Two instructions can be decoded each cycle. These instructions are issued in-order and are
always completed in-ordert. Data cache misses are non-blocking. A single outstanding
cache miss does not stall the pipeline, so that load misses or uncached loads are retired
out-of-order. Multiply, Multiply-Accumulate, Divide, Prefetch, and Coprocessor 1
instructions are also retired out-of-order.

1 However, some instructions are retired out-of-order.

1-1

TOSHIBA

X
Chapter 1 Introduction mﬁﬁtcem

1.1 Features
The C790 core has the following features:

2-way superscalar pipeline
128-bit (two 64-bit) data path and 128-bit system bus
Instruction set architecture

e 64-bit MIPS Il instruction set implementation (except LL, SC, LLD and
SCD)

e Selected MIPS IV instruction set implementation (Prefetch and Move
conditional instructions)

e Three-operand Multiply and Multiply-Accumulate instructions
e 128-bit (Quadword) load/store instructions

e 128-bit multimedia instructions which configure the 128-bit data path as two
64-bit, four 32-bit, eight 16-bit or sixteen 8-bit paths

« Configurable Endianness

Branch prediction with Branch History Table (BHT) and Branch Target Address
Cache (BTAC)

Large on-chip caches

e Instruction cache: 32KB, 2-way set associative

« Data cache: 32KB, 2-way set-associative (with write-back protocol)
« Non-blocking load, hit under miss and early restart on first quadword
e Data cache line locking

» Prefetch functions

e 64 Byte cache line

Fast integer Multiply and Multiply-Accumulate operations

Memory management unit

e 48-entry (96 pages) fully associative translation look-aside buffer (TLB)
e 32-bit physical address space and 32-bit virtual address space
IEEE754-1985 compatible FPU (MIPS 111 ISA supported)
Performance counters supported

Debug support

e Multi-stepping of instruction execution

e Hardware breakpoint on instruction addresses

e Hardware breakpoint on data address and data value

e PC tracing capability

128-bit demultiplexed data bus and 32-bit address bus

e Pipelined addresses

* Bus error supported

e Multiple masters supported

1-2

TOSHIBA

X
Chapter 1 Introduction mﬁﬁtcem

1.2 Related Documents

The following documents should be referenced:

[1] MIPS R4000 Microprocessor User's Manual
[2] MIPS R10000 Microprocessor User’'s Manual
[3] MIPS IV Instruction Set (Revision 3.2)

1-3

X
TOSHIBA Chapter 1 Introduction mﬁﬁtcem

1.3 Revision History
Rev. 1.0: June 24", 1999

Rev. 1.1: December 25", 1999

Add IEEE754 compatible FPU feature (both single- and double-precision)

Rev. 1.2: March , 2000
Publish

Rev. 2.0: April , 2001
Fixed alot of typo

1-4

X
TOSHIBA Chapter 1 Introduction mﬁﬁtcem

1.4 Conventions Used in This Manual

The names of registers, fields, and instructions are italicized as in this example:

The Status register (SR) is a read/write register that contains the operating mode,
interrupt enabling, and diagnostic states of the processor.

When a name is first introduced, it is shown in bold type.
Ranges are denoted by a colon as in the following example:

The 4-bit Coprocessor Usability (CU[3:0]) field controls the usability of four possible
COpProcessors.

Conventions used in instruction descriptions are defined at the beginning of Appendices A,
B, C, and D.

1-5

X
TOSHIBA Chapter 1 Introduction mﬁﬁtcem

1.5 Restrictions for Use of the C790 CPU Core

1. Revision History

Revision Date Contents
1.0 4/2/2001 FLX01-FLXO06; Restrictions for User's Manual Rev.2.0

Items 1 through 6 in the description below are the restrictions that must be obeyed
when using the C790 CPU core (User's Manual Rev.2.0).

Table 1-1. Restriction List

ID Contents
FLX01 TLB exceptions masks bus errors.
FLX02 Bus errors are masked when Status.ERL==1 or Status.EXL = 1.
FLX03 AdEL occurs in index-type ICACHE or BTAC CACHE instructions.
FLX04 kuseg becomes an uncached area when an error exception (Status.ERL = 1) occurs.
FLX05 First two instructions in an exception handler are executed as NOP when a bus error occurs.
FLX06 Unexpected instruction-fetch bus-errors occur when executing a Crashme program.

1-6

TOSHIBA

X
Chapter 1 Introduction mﬁﬁtcem

2. Description

2.1 TLB exceptions mask bus errors (FLX01)

2.11

2.1.2

Phenomenon

There are cases in which TLB exceptions occurring immediately after a bus error
mask the bus error and the bus error can not be detected.

Corrective measures

This is caused by bus error exceptions having a lower priority than TLB
exceptions in instruction fetch and data access (refer to “5.5.1 Exception Priority”).
Check the followings when programming a TLB exception handler.

1) Using the TLB exception handler, check for occurrence of any bus error
exceptions before a page refill.

2) Using the TLB exception handler, check for occurrence of any bus error
exceptions if a page that should be refilled is incorrect.

3) Using the TLB exception handler, execute at Status.EXL==0 and
Status.ERL==0 after the TLB exception handler stores to EPC, Cause, and
Status registers.

Pending bus errors can be confirmed by referring to Status.BEM.

1-7

X
TOSHIBA Chapter 1 Introduction mﬁﬁtcem

2.2 Bus errors are masked when Status.ERL==1 or Status.EXL = 1 (FLX02)

2.2.1 Phenomenon
Even if a bus error occurs during instruction fetch in an exception handler
(Status.EXL==1 or Status.ERL==1), the CPU does not accept the exception and
executes instruction code with indeterminate values read from the bus.

2.2.2 Corrective measures

This is caused by bus error exceptions being masked by Status.EXL==1 or
Status.ERL==1. Do not cause exceptions due to instruction fetch in
Status.EXL==1 or Status.ERL==1. Generating exceptions in an exception handler
is dangerous. For example:

1) The JR instruction may potentially cause an address error or a bus error. Do
not use JR instruction in Status.EXL==1 or Status.ERL==1.

2) A mapped region may potentially cause a TLB exception. Be sure to execute
using an unmapped region like that below:
0x8000_0000 — Ox9FFF_FFFF: kseg0
0xA000_0000 — OXBFFF_FFFF: ksegl

1-8

TOSHIBA

X
Chapter 1 Introduction mﬁﬁtcem

2.3 AdEL occurs in index-type ICACHE or BTAC CACHE instructions (FLX03)

231

2.3.2

Phenomenon

When executing index-type CACHE instructions below in either the User mode or
Supervisor mode, operation occasionally becomes undefined and generates ADEL
(Address Error exception; load and inst fetch).

There are five index-type ICACHE sub operations as listed below.

00111 CACHE IXIN 1$ index invalidate
00000 CACHE IXLTG 1$ index load tag
00100 CACHE IXSTG I$ index store tag
00001 CACHE IXLDT I1$ index load data
00101 CACHE IXSDT I1$ index store data

There are four BTAC CACHE sub operations as listed below.
00010 CACHE BXLBT index load BTAC
00110 CACHE BXSBT index store BTAC
01100 CACHE BFH BTAC flush
01010 CACHE BHINBT hit invalidate BTAC

However, there is no problem when Status.KSU==Kernel. Please note that
Status.KSU==Kernel includes the kernel mode at Status.EXL==1 or
Status.ERL==1 as well. There is also no problem when Status.CU[0]==0, and
Status.KSU==User mode or Supervisor mode.

Corrective measures

In Status.CU[0]==1 and Status.KSU==Supervisor or User, execute under
VA[31]==0 when executing either index-type ICACHE or BTAC CACHE
instructions. VA here represents base reg + offset.

1-9

X
TOSHIBA Chapter 1 Introduction mﬁﬁtcem

2.4 kuseg becomes an uncached area when an error exception
(Status.ERL = 1) occurs (FLX04)

2.4.1 Phenomenon
There are cases in which kuseg (0x0000_0000 — Ox7FFF_FFFF) becomes
uncached in an error exception handler (Status.ERL==1) and data consistency

with cached area (kseg, ksseg, kseg0) is lost.

2.4.2 Corrective measures
In an error exception handler (Status.ERL==1), when accessing kuseg
(0Ox0000_0000 — O0x7FFF_FFFF), access it after guarding using SYNC.L as follows:
SYNC.L
SW ku seg

1-10

X
TOSHIBA Chapter 1 Introduction mﬁﬁtcem

2.5 First two instructions in an exception handler are executed as NOP when a
bus error occurs (FLX05)
2.5.1 Phenomenon

There are cases in which the first two instructions in an exception handler are
executed as NOP instructions, when certain exception occurs and then a bus error
occurs immediately before jumping to the exception handler.

2.5.2 Corrective measures

Place NOP in the first two instruction locations in all exception handlers.

1-11

X
TOSHIBA Chapter 1 Introduction mﬁﬁtcem

2.6 Unexpected instruction-fetch bus-errors occur when executing a Crashme
program (FLX06)
2.6.1 Phenomenon

In Kernerl mode or Supervisor mode, unexpected Instruction-fetch bus errors
occur when attempting to execute a program called "Crashme” of Linux, since
prohibited instruction-sequences that do not obey the following programming
restrictions are executed.

In User mode, such a phenomenon doesn’t occur.

2.6.2 Corrective measures

In Kernerl mode or Supervisor mode , obey the following programming
restrictions:

1) Any CACHE instruction must not be placed in a branch delay slot.

2) SYNC.P must be located immediately before or immediately after any
CACHE instruction.

1-12

X
TOSHIBA Chapter 2 Architecture Overview mﬁﬁtcem

2. Architecture Overview

This chapter includes an overview of the C790 architecture. It discusses the following
items:

e Block diagram and main modules
e Superscalar pipeline operation

* Instruction set

e Registers

e Memory Management

e Cache Memory

* Bus interface

e Floating Point Unit

* Performance Monitors

e Debug Support

2-1

X
TOSHIBA Chapter 2 Architecture Overview mﬁﬁtcem

2.1 Block Diagram and Functional Block Descriptions

This section presents a block diagram of the main modules of the C790 and summarizes
the modules.

211 Instruction
Virtual Address
PC Unit i (|VA) 2.1.3 Y
. > Instruction Cache (I-Cache)
PC Pipe & 2.1.2 + Tag, BHT, Predecode, Inst RAMs
(E4T§r§ry TLB (32 KB, 2-way set assoc.)
fully assoc.) 2 entries Instruction
7y Phys"_‘ilall)::\)ddress 21.4 v I-Cache Output Pipeline
Issue Logical Staging Resigters Control
21.2 v (2 Issue In-order)
MMU 215 v
TLB Refill Bus L
GPR
48 entry TLB (32x128-bit wide registers) -t
CopO0 Registers I L 1
2.1.7 v
A Operand/Bypass Logic |<—
pmmmmmm e e ---2 128D +
! T
1 1
: y : Y 2.15
1
P 8 Virtual Address : FPR
| a Computation Logic i (32x64-bit wide
1 < 1 . t
! -% Data Virtual Address | registers)
1 T
s v (OVA) v | 216
W 1
1
i 9 y213 y y21l2 y ﬂ ﬂ ﬂ !d
! Data Cache DTLB : °
! (D-Cache) (4 entries) ' © =
| P e g g e
| 1 o 2 2)
| Data 1| |§ Qc' Qc' &
i (32 KB, 2-way| o8 S S L
\ setassoc) || Physical1 |5 2 2 3
: . Address | | § 3 3 o)
| T (DPA) ! | L L)
. | o u w —
1 ! m . = @)
1
1 1
| R 2N 2N 2 N
1
el el Anieinks Il el T Result and Move Buses 2.1.10 128b
2.1.9
Y
Response
Buffer WBB » UCAB
* 218 + * BIU Bus .
\
+ 2.1.11 128b

Bus Interface Unit

$ 128b

CPU Bus

Figure 2-1. C790 Block Diagram

2-2

X
TOSHIBA Chapter 2 Architecture Overview mﬁﬁtcem

2.1.1 PC Unit

The 32-bit Program Counter (PC) holds the address of the instruction which is being
executed. It also contains a 64-entry Branch Target Address Cache (BTAC) which stores
branch target addresses used during branch prediction.

212 MMU

The Memory Management Unit supports the address translation functions of the CPU. It
supplies the DTLB (Data Translation Lookaside Buffer) and ITLB (Instruction
Translation Lookaside Buffer) with data via the TLB Refill Bus. Usage of these buffers is
described in chapter 6.

2.1.3 Caches

Operation of the Instruction Cache and the Data Cache is described in Chapter 7. For
each branch instruction, present in the instruction cache, two bits of branch history are
stored in the Branch History Table (BHT).

2.1.4 Issue Logic and Staging Registers

The issue logic decides how to route instructions to appropriate pipes. It issues up to 2
instructions every cycle. Routing is described and discussed later in section 2.2.

2.1.5 GPR (General Purpose Registers) and FPR (Floating-Point
Registers)
The General-Purpose Registers and the Floating-Point Registers are discussed in Section
2.3.

2.1.6 The Five Execution Pipes

2.1.6.1 10 and I1 Pipes

There are two integer ALU pipelines (10 and 11), each of which contains a complete 64-bit
ALU, Shifter and Multiply-Accumulate unit. The 10 pipeline contains the SA register used
for funnel shift operations. The two 64-bit ALU pipelines can be configured dynamically
(on an instruction-by-instruction basis) into a single 128-bit execution pipeline to
execute 128-bit Multimedia ALU, Shift and Multiply-Accumulate instructions.
Furthermore, the two ALU pipelines share a single 128-bit multimedia aligner.

2.1.6.2 LS-Load/Store Pipe

The Load/Store (LS) pipe contains logic to support a single 128-bit Load and Store
instruction.

2.1.6.3 BR-Branch Pipe

The Branch (BR) pipe contains logic to implement a single Branch instruction including
Branch comparators.

2.1.6.4 C1-COP1/FPU Pipe

The C1 pipe contains logic to support a single/double Floating Point coprocessor unit
(COPY).

2-3

X
TOSHIBA Chapter 2 Architecture Overview mﬁﬁtcem

2.1.7 Operand/Bypass logic

This module takes data from the GPRs and from the Result and Move Buses, and routes
the data to the pipelines.

2.1.8 Response Buffer and Writeback Buffer

The Writeback Buffer (WBB) is an 8 entry by 16 byte (one quadword) FIFO queuing up
stores prior to accessing the CPU bus. It increases C790 performance by decoupling the
processor from the latencies of the CPU bus. It is also used during the gathering operation
of uncached accelerated stores; sequential stores less than a quadword in length are
gathered in the WBB, thereby reducing bus bandwidth usage.

219 UCAB

The Uncached Accelerated Buffer (UCAB) is a 1 entry by 8 quadword buffer. It caches 128
sequential bytes of data during an uncached accelerated load miss. Subsequent loads from
the uncached accelerated address space get their data from this buffer if the address hits
in the UCAB, thereby eliminating bus latencies and providing higher performance.

2.1.10 Result and Move Buses

The Result and Move Buses convey data between execution units, the data cache, and the
Operand/Bypass Logic unit.

2.1.11 Bus Interface Unit and BIU Bus

The BIU connects the core to the rest of the system. It interfaces the core’s internal bus
signals to the CPU Bus.

2-4

X
TOSHIBA Chapter 2 Architecture Overview mﬁﬁtcem

2.2 Superscalar Pipeline Operation

The C790 has a six-stage superscalar pipeline. It can fetch, decode and execute a
maximum of two instructions in parallel each cycle.

This section discusses in more detail the six execution pipelines listed in Section 2.1. It
also discusses how instructions are routed among pipes.

2.2.1 Integer Instruction Pipeline Stages

The C790 contains four integer pipelines: the 10 and the I1 pipes, and the Load/Store and
Branch pipes. Each pipe consists of the following six stages with each stage having 2
phases:

¢ |: Instruction Address Select
¢ Q: Instruction Queue

* R: Register Fetch

* A: Execution

+ D: Data Fetch

* W: Write-back

Figure 2-2 shows the six stages of an integer instruction pipeline

N S Velle)

—|[=|O|O||T

—|=|OlOo|lA|T|>]|>

—| =00 T|>|>|T|O

_|-|olo|x|x|>|>|o|o|s|=
Olo|x|o|x|>|0|0=|=

o|o|>|>|ololss

>|>|olo|s|s

o|o|g|=

gl

Current CPU
Cycle

Figure 2-2. C790 Integer Instruction Pipeline

2-5

TOSHIBA

X
Chapter 2 Architecture Overview mﬁﬁtcem

I: Instruction Address Select

During the | stage, the following occurs:

The sequential address is calculated
The branch address is calculated
The instruction address is selected from the following sources
Sequential address
Actual Branch / Jump address
Predicted Branch Target address from the BTAC
Exception vector address
EPC and Error PC

Q: Instruction Queue

During the Q stage, the following occurs:

The instruction translation look-aside buffer (ITLB) does the virtual-to-physical
address translation

The instruction cache (data, Tag, steering bits & BHT) fetch begins

TLB read for instruction fetch starts

The instruction cache fetch is completed

TLB read for instruction fetch completes

The instruction cache Tag hit check is determined and the way selection is
done

The appropriate instructions are selected by the steering bits

R: Register Fetch
During the R stage the following occurs:

Instructions are bussed to the appropriate execution units

Register file is read

Execution unit structural hazards are determined

Instructions are decoded, data dependencies are determined and the
appropriate instructions are issued

A: Execution

During the A stage, the following occurs:

Results from the D or W stages are bypassed

The execution units start and complete the integer arithmetic, logical, shift and
multimedia instructions

The iterative steps of the Multiply, Multiply-Accumulate, or Divide instructions
are executed

The virtual address for load and store instructions is calculated

The branch condition is determined

The DTLB is read

The Data Cache and UCAB read starts

2-6

X
TOSHIBA Chapter 2 Architecture Overview mﬁﬁtcem

D: Data Fetch
During the D stage, the following occurs:

* The TLB read for a data access

e The Data Cache and UCAB read is completed

e The Data Cache Tag checking is completed

e Load or register data is obtained from COP1 (FPU)

¢ COPO registers are read

« Data alignment and way selection is done for the data from the Data Cache
« Data sign extension is done

¢ Complete updating BHT bits and the BTAC

e All the exceptions are detected

W: Write Back
During the W stage, the following occurs:

e For store operations data is written to the Data Cache

« Data for coprocessor data transfer instructions is transferred to COP1 (FPU)

« For register-to-register and load instructions, the result is written to the
register file

* COPO, COP1 (FPU) registers are written for coprocessor data transfer
instructions

2-7

X
System

TOSHIBA Chapter 2 Architecture Overview m RISC

2.2.2 C1 (COP1/FPU) Instruction Pipeline Stages

The C790’'s C1 (COP1/FPU) pipeline consists of the following eight stages:

e I: Instruction Address Select
* Q: Instruction Queue

* R: Register Fetch

e T: COPL1 Register Fetch

e X: FP Execution 1st Stage

e Y: FP Execution 2nd Stage

e Z: FP Execution 3rd Stage

e S: Register File Write Stage

The eight stages of the pipeline for COP1/FPU are shown in Figure 2-3 with some pipeline
stages identified with two letters. COP1 instructions execute simultaneously in the main
integer pipeline 10 and the coprocessor 1 pipeline. The first letter identifies the main
integer pipeline stage and the second letter identifies the coprocessor pipeline stage.

|| Q| R |AaT|DX|WIY| Z | S
I o | R [AT]DIX|WIY] Z | S
I o | R [AT]|DIX|WiY] Z | S
I | Q| R |AT|DX|WIY] Z | S
'l Q| R [AaT|DiX|WIY] Z | S
R |AT|oix|wiy] z | s
o | R [AaT|oX|WiY] Z | S
I o | R [AT]DIX|WIY] Z | S

Current CPU Cycle

Figure 2-3. FPU Pipeline

The I, Q, and R stages were previously described in Section 2.2.1. The following describes
stages specific to the COP1 pipeline:

T: COP1 Register Fetch

During the T stage, the following occurs:

* Register file read for operands
* Bypass muxes from the S Stage/W Stage for S/T overlap.

2-8

X
TOSHIBA Chapter 2 Architecture Overview mﬁﬁtcem

X: FP Execution 1st Stage

This stage is the first step for floating point operations.

During the X stage, the following occurs:

e Detect Exceptions for input data.

« Detect Exception possibilities for result.

e The Booth function/Wallace multiplication is performed for multiply, the de-
nor-malization is performed for add/subtract.

Y: FP Execution 2nd Stage

This stage is the second step for floating point operations. The following occurs:

» Test overflow/underflow on exponent is done

¢ Normalization for multiplication is done.

* Add/subtract the significand for add/subtract operations.

¢ Count leading zeros, to determine the shift amount for the normalization

Z: FP Execution 3rd Stage

This stage is the third step for floating point operations. The following occurs:

* Overflow/underflow detection

e Exponent readjustment

« Shift the significand for normalization
* Round the result

* Detect inexact exception

S: Register File Write Stage

During the S stage, the following occurs:

« FPR registers are written.
e FCSR31 is updated.
e Bypass values are passed to the T stage.

2-9

TOSHIBA

X
Chapter 2 Architecture Overview mﬁﬁtcem

2.2.3 Classification and Routing of Instructions According to
Execution Pipelines

This section discusses how the five execution pipelines are used in conjunction with
instruction routing. Figure 2-4 identifies the specific execution pipelines into which
instructions of a particular class are routed, and shows which physical execution units
handle instructions from a particular logical pipe. Instruction categories are identified in
italics, and are shown within the physical pipes where they are executed. ALU
instructions can be executed in either integer pipe 10 or 11. COP1 Operate, and COP1
Move instructions execute in two pipes as shown, as does the Wide Operate.

Logical Pipe0 Logical Pipel
A A
s I s ™
/ 10 pipe 11 pipe LS pipe
ALU ALU Load/
SA Operate SYNC Store
MACO ERET Prefetch
COPO CACHE
MAC1
TS T T T T T T T T T T T T T ST T ST T I T T TS T T T TS """"""""':
i Wide Operate !
1
__________________________________ S |
|
® BR pipe
2
o
= Branch
L
[
>
=
o
C1 Compute C1 Move
| i TS T T T TS T E s s m T 1
. COP1 Operate ' . .
1 1 1
"""""""" A B ' COP1 Move '
1 1

Figure 2-4. Instruction Routing in Logical Pipes and Physical Pipes

2-10

TOSHIBA

X
Chapter 2 Architecture Overview mﬁﬁtcem

Table 2-1 shows the categories of instructions and the execution pipelines that can execute
those instructions. The instructions in a single category have the same issuing policy.
Instructions which require more than a single execution pipeline are identified in the

pipeline column with the (O &) symbol.

For example, COP1 Move requires both the LS
and the C1 execution pipelines. On the other hand, the ALU instructions can be executed
in either the 10 or the 11 execution pipelines.

Table 2-1. Categories of Instructions and How They Are Routed

Categories Execution Pipeline Instructions
10 11 LS BR Cl

Load/Store o Load, Store, Wide Load , Wide
Store, Prefetch, CACHE

SYNC o Synchronization

ERET o Exception return

SA Operate o Move to/from to SA register

COPO o COPO Coprocessor move,
COPO Coprocessor operations

COP1 Move! O0& O COP1 Coprocessor move,
COP1 Coprocessor Load/Store

COP1 Operate2 0& o COP1 Operate Instructions

ALU® o o Arithmetic, Shift, Logical, Trap,
SYSCALL, BREAK

MACO o Multiply and Multiply
-Accumulate for HI/LO
register, MFHI/LO, MTHI/LO

MAC1 O Multiply and Multiply-
Accumulate for HI1/LO1
register, MFHI1/LO1,
MTHI1/LO1

Branch O Branch, Jump, Jump/Link, All
Coprocessor Branches

Wide Operate® O 0& Wide ALU, Wide shift, Wide
MAC, Funnel shift, Wide HI/LO
Moves

L COP1 Move instructions execute concurrently in the LS and the C1 pipes.
2 CcoP1 Operate instructions execute concurrently in the 10 and the C1 pipes.

® ALU instructions can be executed in either the 10 or the 11 pipes.

* Wide Operate instructions execute concurrently in the 10 and the 11 pipes.

2-11

X
TOSHIBA Chapter 2 Architecture Overview mﬁﬁtcem

2.2.4 Instruction Issue Combinations

The C790 always fetches two instructions. A pair of staging registers acts as a ‘bellows’
between the Q and the R stage. If an instruction can't be issued in a particular cycle, it is
saved in the staging registers. In the next cycle the C790 again fetches two instructions
and tries to issue two (the one left over in the staging register from the previous cycle and
the next sequential one from the pair that is fetched). So the C790 always tries to issue
two instructions each cycle whenever it can.

The two instructions that get issued go to the R-stage of the pipeline and get associated
with one of two logical pipes: Pipe0 and Pipel. The instructions are then routed to an
appropriate physical pipe for processing.

Instruction categories that can get issued to logical PipeO are:

ALU

Branch

Wide Operate
SA Operate
MACO

COP1 Operate

oUhwhE

An alternate way to view this is to recognize that logical Pipe0O is made up of the 10, C1
and BR execution pipelines. When issuing Wide Operate instructions logical PipeO also
uses the 11 execution pipeline.

Instruction categories that can get issued to logical Pipel are:

ALU

Branch
SYNC
ERET
Load/Store
COP1 Move
COPO
MAC1

ONogbhwhE

An alternate way to view this is to recognize that logical Pipel is made up of the 11, LS,
C1 and BR execution pipelines.

All instruction categories are statically bound to a single logical pipe, that is, they can only
be issued to a particular logical pipe. However the ALU and Branch instruction categories
can get issued to either of the two logical pipes. Thus the binding of these two instruction
categories to a particular logical pipe is done at instruction issue time.

There are some special cases of instruction sequences that are not allowed in the MIPS
ISA. An instruction from the Branch category is not allowed to have another instruction
from either the Branch or ERET category in its branch delay slot. So the following pairs of
instructions are illegal and effectively never issued together:

1. Branch - Branch
2. Branch - ERET

2-12

X
TOSHIBA Chapter 2 Architecture Overview mﬁﬁtcem

The following sequences of instructions are also not allowed in the C790. Branch-Likely
instructions are a subset of the Branch category (limited to the branch likely instructions).

Branch - SYNC.P

Branch - SYNC.L

Branch - CACHE *1
Branch-Likely - MTSA
Branch-Likely - MTSAB
Branch-Likely - MTSAH
Branch-Likely - TLBR *2
Branch-Likely - TLBWI *2
Branch-Likely - TLBWR *2

©ooNoOhwNE

*1 CACHE instruction must be guarded by Sync instructions.
Sync.P Sync.L
CACHEI$ or CACHE D$
Sync.P Sync.L

*2 TLBR, TLBWI, TLBWR instructions must be followed by Sync.P
TLBxx
Sync.P

The following table shows the instruction categories which can be issued concurrently to
the two logical pipes. All combinations are legal except the ones marked with an “X”. The
combinations marked with a “Y” can be issued concurrently, i.e., enter the R stage
together but then the younger instruction stalls in the A stage for a single cycle in order to
avoid a resource hazard.

Table 2-2. Concurrently Issued Instruction Categories

LOGICAL PIPEO

SA COP1 | ALU | MACO | Branch | Wide
Oper. | Oper. Oper.

Load/Store
ERET X
SYNC
LzC Y
COP1 Move
ALU

MAC1
Branch X
COPO

LOGICAL PIPE1

X: illegal combination
Y: Can be issued concurrently but it will stall due to structure hazard.

2-13

X
TOSHIBA Chapter 2 Architecture Overview mﬁﬁtcem

2.3 Registers

The C790 extends the normal MIPS compatible register set by extending the general
purpose registers (GPRs) from 64-bits to 128-bits, adding an additional pair of HI/LO
registers for the 11 pipe and adding the SA register for the funnel shift instruction.

2.3.1 CPU Registers

The C790 has 128-bit wide GPRs. The upper 64 bits of the GPRs are only used by the
C790-specific “Quad Load/Store”, and “Multimedia (Parallel)” instructions.

The HI1 and LO1, which are the upper 64 bits of each of the 128-bit HI and LO registers,
are also used by new multiply and divide instructions, such as MULT1, MULTU1, DIV,
DIvU1, MADD1, MADDU1, MFHI1, MFLO1, MTHI1, and MTLO1, which are non-
parallel 11 pipeline-specific instructions.

The SA register contains the shift amount used by the 256 bit funnel shift instruction.

2.3.2 FPU Registers

The floating point unit (COP1) has 64-bit wide floating point registers. It also contains 2
floating point control registers .

2-14

TOSHIBA

X
Chapter 2 Architecture Overview mﬁﬁtcem

2.3.3 COPO Registers

Table 2-3 identifies the COPO registers of the C790.

Table 2-3. Coprocessor 0 Registers

Register| Register Description Purpose

No. Name
0 Index \I;;ic;i%rgmmable register to select TLB entry for reading or MMU
1 Random Pseudo-random counter for TLB replacement MMU
2 EntryLoO Low half of TLB entry for even PFN (Physical page number) MMU
3 EntryLol Low half of TLB entry for odd PFN (Physical page number) MMU
4 Context Pointer to kernel virtual PTE table Exception
5 PageMask Mask that sets the TLB page size MMU
6 Wired Number of wired TLB entries MMU
7 (Reserved) Undefined Undefined
8 BadVAddr Bad virtual address Exception
9 Count Timer compare Exception
10 EntryHi High half of TLB entry(Virtual page humber and ASID) MMU
11 Compare Timer compare Exception
12 Status Processor Status Register Exception
13 Cause Cause of the last exception taken Exception
14 EPC Exception Program Counter Exception
15 PRId Processor Revision Identifier MMU
16 Config Configuration Register MMU
17 (Reserved) Undefined Undefined
18 (Reserved) Undefined Undefined
19 (Reserved) Undefined Undefined
20 (Reserved) Undefined Undefined
21 (Reserved) Undefined Undefined
22 (Reserved) Undefined Undefined
23 BadPAddr Bad Physical Address Exception
24 Debug This is used for Debug function Debug
25 Perf Performance Counter and Control Register Exception
26 (Reserved) Undefined Undefined
27 (Reserved) Undefined Undefined
28 TagLo Cache Tag register(low bits) MMU
29 TagHi Cache Tag register(high bits) MMU
30 ErrorPC Error Exception Program Counter Exception
31 (Reserved) Undefined Undefined

2-15

X
TOSHIBA Chapter 2 Architecture Overview mﬁﬁtcem

2.4 Memory Management

The C790 processor provides a memory management unit (MMU) which uses an on-chip
translation look-aside buffer (TLB) to translate virtual addresses into physical addresses.

The C790 supports the MIPS compatible 32-bit address and 64-bit data mode. Only 32-bit
virtual and physical addresses have been implemented. There is no requirement for
address sign extension. Address error exception checking will not be done on the “upper”
32-bits (which are ignored). The only condition that will generate the address error
exception will be address alignment errors and segment protection errors. In Kernel mode,
it is free from address error exception for program counter to wrap-around from kseg3 to
kuseg.

Since there is only one addressing mode, all the four MIPS ISAs (I, 11, I1l, 1V) and the
C790 specific ISA are available without any restrictions in all of the three processor modes
(with the appropriate MIPS ISA coprocessor usable restrictions). As such the reserved
instruction (RI) exception will occur only when the processor really tries to execute an
undefined opcode.

Features

e MIPS Ill-compatible 32-bit MMU
e Operating Modes: User, Supervisor, and Kernel

e TLB: 48 entries of even/odd page pairs (96 pages)
Fully associative
» Page Size: 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 16 MB
« ITLB: 2 entries
« DTLB: 4 entries

e Address Sizes: Virtual Address Size = 32 bit, 2 Gbyte per user Process
Physical Address Size = 32 bit, 4 Gbyte

2-16

X
TOSHIBA Chapter 2 Architecture Overview mﬁﬁtcem

2.5 Cache Memory
The C790 core contains both an instruction cache and a separate data cache.
Features

The following are the main features of the caches:

e Separate Instruction Cache and Data Cache
* Virtually indexed and physically tagged caches
* Write-back policy for the Data Cache
« Data Cache and Instruction Cache burst read sequential ordering
e Cache Size: Instruction Cache: 32 KB
Data Cache: 32 KB
e Line Size: 64 Bytes
* Refill size: 64 Bytes
e Associativity: 2-way set-associative
* Write Policy: Write-back and write allocate
e Data order for block reads: Sequential ordering
« Data order for block writes: Sequential ordering
* Instruction cache miss restart: After all data received
e Data cache miss restart: Early restart on first quadword

e Cache parity: No
e Cache Locking: Data Cache Line Lock.
Controlled by CACHE instruction
» Cache Snooping: No
* Non-blocking load: Yes
e Hit Under Miss: Yes (Multiple hits under one miss are supported)
« Data Cache Prefetch: Yes

2-17

TOSHIBA

X
Chapter 2 Architecture Overview mﬁﬁtcem

2.6 Bus Interface

The C790 CPU core is connected to the rest of the system, and to external devices, through
the group of on-chip C790 system bus signals called the CPU Bus.

Features

Separate data and address buses (Demultiplexed operation)
128-bit data bus

Clocked synchronous operations

Peak transfer rate of 2.1 GB/sec (@133 MHz bus clock)
8/16/32/64/128-bit and burst accesses

Multimaster capability

Pipelined operations

No turn-around or dead cycles between transfers

The CPU Bus does not provide:

Cache coherency support
Split transactions

2.7 Floating Point Unit

The floating point unit is IEEE754-1985 compatible as same as FPU in the TX49HF CPU

core.

Main Features:

Tightly coupled to the C790 Integer pipeline.

Supports both double and single precision format as defined in IEEE-754
specification

No hardware support for Denormalized number in the IEEE-754 specification.
Software (exception handler) supports it.

The FPU supports five IEEE exceptions and one MIPS defined exception.
ADD, SUB, MUL, DIV, ABS, MOV, NEG, SQRT, compare and convert are
supported

2-18

X
TOSHIBA Chapter 2 Architecture Overview mﬁﬁtcem

2.8 Performance Counter

The performance counter provides the means for gathering statistical information about
the internal events of the CPU and the pipeline during program execution. The statistics
gathered during program execution aid in tuning the performance of hardware and
software systems based on the processor.

The performance counter consists of one control register and two counters. The control
register controls the functions of the performance counter while the counters count the
number of events specified by the control register.

Features:

e Two performance counter registers

« Over twenty different events within the processor can be counted

e Counting can be selectively enabled in User, Supervisor, Kernel, and Exception
modes

2.9 Debug and Tracing Functions

The C790 supports real-time PC tracing. Pipeline status, target addresses of indirect
jumps, and exception vectors are made available on special signals. The executed
instruction sequence can be restored from signals and the source program.

Features:

¢ One Instruction Address Breakpoint register

¢ One Instruction Address Breakpoint Mask register

¢ One Data Address Breakpoint register

¢ One Data Address Breakpoint Mask register

¢ One Data Value Breakpoint register

¢ One Data Value Breakpoint Mask register

e Each breakpoint individually enabled

« Breakpoint function can be selectively enabled in User, Supervisor, Kernel, and
Exception modes

« External Trigger signal can be generated when breakpoint occurs

e 11 signals used to provide real-time PC tracing function

2-19

X
TOSHIBA Chapter 2 Architecture Overview mﬁﬁtcem

2-20

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3. Instruction Set Overview and Summary

This chapter provides an overview of the C790 instruction set. Refer to Appendices A - D
for detailed descriptions of individual instructions.

3-1

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3.1 Introduction

The C790 supports all MIPS 11l instructions with the exception of 64-bit multiply, 64-bit
divide, Load Linked and Store Conditional instructions. It also supports a limited number
of MIPS 1V instructions and additional C790-specific instructions, such as Multiply/Add
instructions and multimedia instructions.

The instruction set can be divided into the following groups:

* Load and Store

e Computational

e« Jump and Branch

* Miscellaneous

e System Control Coprocessor (COPO)
e Coprocessor 1 (COP1)

e C790-specific

3-2

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3.2 CPU Instruction Set Formats

There are three instruction formats: immediate (1-type), jump (J-type), and register (R-
type), as shown in Figure 3-1. The use of a small number of instruction formats simplifies
instruction decoding (thus producing higher frequency operations) and allows the compiler
to synthesize more complicated (and less frequently used) operations and address modes
from these three formats as needed.

I-type (Immediate)
31 2625 2120 16 15 0
[op [s | = immediate I

J-type (Jump)

31 26 25 0
| op | target I
R-type (Register)

31 26 25 2120 16 15 11 10 65 0

| op | rs | rd sa funct I
op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) register or branch condition
immediate 16-bit immediate value, branch displacement or address displacement
target 26-bit jump target address
rd 5-bit destination register specifier
sa 5-bit shift amount
funct 6-bit function field

Figure 3-1. CPU Instruction Formats

3-3

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3.3 Instruction Set Summary

The C790 supports MIPS 11l instructions! as well as a limited number of MIPS IV
instructions. A large number of C790-specific instructions, such as multiply/add
instructions and multimedia instructions have also been implemented.

3.3.1 Load/Store Instructions

The instructions in this group transfer data of different sizes: bytes, halfwords, words,
doublewords and quadwords. Signed and unsigned integers of different sizes are
supported by loads that either sign-extended or zero-extended the data loaded into the
register.

Load and store instructions are immediate (I-type) instructions that move data between
memory and the general registers. The only addressing mode that load and store
instructions directly support is base register plus 16-bit signed immediate offset.

3.3.1.1 Normal Loads and Stores

The C790 does not support Load Linked and Store Conditional instructions, LL, LLD, SC
and SCD. For details of these instructions refer to Appendix A.

Table 3-1. Load / Store Instructions

Mnemonic Description Defined in
LB Load Byte MIPS |
LBU Load Byte Unsigned MIPS |
LD Load Doubleword MIPS Il
LDL Load Doubleword Left MIPS Il
LDR Load Doubleword Right MIPS 1l
LH Load Halfword MIPS |
LHU Load Halfword Unsigned MIPS |
LW Load Word MIPS |
LWL Load Word Left MIPS |
LWR Load Word Right MIPS |
LWU Load Word Unsigned MIPS Il
SB Store Byte MIPS |
SD Store Doubleword MIPS 1lI
SDL Store Doubleword Left MIPS 1l
SDR Store Doubleword Right MIPS 1l
SH Store Halfword MIPS |
SW Store Word MIPS |
SWL Store Word Left MIPS |
SWR Store Word Right MIPS |

! Note: The C790 does not support the following MIPS 11l instructions:
64-bit multiply and divide instructions (DMULT, DMULTU, DDIV, DDIVU)
Semaphore instructions (LL, LLD, SC, SCD)

3-4

X
System

TOSHIBA Chapter 3 Instruction Set Overview and Summary m RISC

3.3.1.2 Multimedia Loads and Stores

The C790 implements 128-bit (quadword) load and store instructions for multimedia
purpose. For details of these instructions refer to Appendix B.

Table 3-2. Multimedia Load / Store Instructions

Mnemonic Description Defined in
LQ Load Quadword C790
SQ Store Quadword C790

3.3.1.3 Coprocessor Loads and Stores

These loads and stores are coprocessor instructions. A particular coprocessor is enabled if
corresponding CU bit is set in CPO Status register. Otherwise executing one of these
instructions generates a Coprocessor Unusable exception. For details of these instructions
refer to Appendices C and D.

Table 3-3. Coprocessor Load / Store Instructions

Mnemonic Description Defined in

LDC1 Load Doubleword to Floating MIPS 1l
Point

LWC1 Load Word to Floating Point MIPS |

SDC1 Store Doubleword from Floating MIPS Il
Point

SWC1 Store Word from Floating Point MIPS |

3.3.1.4 Data Formats and Addressing

The C790 processor uses five data formats:

e 128-bit quadword
* 64-bit doubleword

* 32-bit word
* 16-bit halfword
e 8-bit byte

Byte ordering within each of the larger data formats — halfword, word, doubleword — can
be configured in either big-endian or little-endian order. Endianness refers to the location
of byte 0 within the multi-byte data structure. Figure 3-2 and Figure 3-3 show the
ordering of bytes within words and the ordering of words within multiple-word structures
for the big-endian and little-endian conventions.

When the C790 processor is configured as a big-endian system, byte 0 is the most-
significant (leftmost) byte, thereby providing compatibility with MC 68000® and IBM 370®

conventions. Figure 3-2 shows this configuration.

3-5

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

Bit #
Higher Word |
Address Address | 31 24 23 16 15 87 0 |
12 12 13 14 15
8 8 9 10 11
Lower 4 4 5 6 7
Address 0 0 1 2 3

Figure 3-2. Big-Endian Byte Ordering

When configured as a little-endian system, byte 0 is always the least-significant
(rightmost) byte, which is compatible with iIAPX® x86 and DEC VAX® conventions.

Bit #
Higher Word |
Address Address | 31 24 23 16 15 87 0 |
12 15 14 13 12
8 11 10 9 8
Lower 4 7 6 5 4
Address 0 3 2 1 0

Figure 3-3. Little-Endian Byte Ordering

In this text, bit 0 is always the least-significant (rightmost) bit: thus, bit designations are
always little-endian (although no instructions explicitly designate bit positions within
words).

3-6

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

Figure 3-4 and Figure 3-5 show little-endian and big-endian byte ordering in doublewords.

Most-significant byte Least-significant byte
Least significant Word

|
|
Bit# 63 |5655 4847 40390 3231 2423 1615 87
Byte# | 7 | 6 | 5 | 4 | 3| 2| 1] o
| | _’_l
!
Byte

Halfword

o _|

|
Bt# 17 6 543 2 1 0!

Bits in a Byte

Figure 3-4. Little-Endian Data in a Doubleword

Most-significant byte Least-significant byte

Least significant Word
1

| |
Bit# 63 |5655 4847 4039 3231 2423 1615 87 \ 0
Byte# | 0 | 1 2 | 3 4 5 6 | 7 |

! !
Halfword Byte

|
Bit#176 543 21 0

Bits in a Byte

Figure 3-5. Big-Endian Data in a Doubleword

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

The CPU uses byte addressing for halfword, word, doubleword, and quadword accesses
with the following alignment constraints:

* Halfword accesses must be aligned on an even byte boundary (0, 2, 4...).

* Word accesses must be aligned on a byte boundary divisible by four (0, 4, 8...).

« Doubleword accesses must be aligned on a byte boundary divisible by eight (0, 8,
16...).

* Quadword accesses must be aligned on a byte boundary divisible by sixteen (0,
16, 32...).

The following special instructions load and store words that are not aligned on 4-byte
(word), 8-byte (doubleword), boundaries:

LWL LWR SWL SWR
LDL LDR SDL SDR

These instructions are used in pairs to provide addressing of misaligned words.
Addressing misaligned data incurs one additional instruction cycle over that required for
addressing aligned data. This extra cycle is because of an extra instruction for the “pair”
(e.g.,LWL and LWR form a pair). Also note that the CPU moves the unaligned data at the
same rate as a hardware mechanism.

Figure 3-6 and Figure 3-7 shows the access of a misaligned word that has byte address 3.

Bit #
Higher |
Address l31 2423 1615 87 ol
4 5 6
3
Lower
Address
Figure 3-6. Big-Endian Misaligned Word Addressing
Bit #
Higher |
Address | |
31 24 23 16 15 87 0
6 5 4
3
Lower
Address

Figure 3-7. Little-Endian Misaligned Word Addressing

3-8

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3.3.1.5 Defining Access Types

Access type indicates the size of the C790 processor data item to be loaded or stored, set
by the load or store instruction opcode.

Regardless of access type or byte ordering (endianess), the address given specifies the low-
order byte in the addressed field. For a big-endian configuration, the low-order byte is the
most-significant byte; for a little-endian configuration, the low-order byte is the least-
significant byte.

The access type, together with the four low-order bits of the address, defines the bytes
accessed within the addressed doubleword (shown in Table 3-4 and Table 3-5). Only the
combinations shown in Table 3-4 and Table 3-5 are permissible; other combinations cause
address error exceptions.

3-9

TOSHIBA

Chapter 3 Instruction Set Overview and Summary m

X
System
RISC

Table 3-4. Defining Access Types (Big-Endian)

Access Type Low-Order Bytes Accessed
Mnemonic Address Big endian
Bits (127 9 63 31 0)

3 2 1 O Byte
Quadword 0 0 0 0 4 718191]10(11)12|13|14]15
Doubleword 0 0 0 0 4 7

11001 O 8910111213 |14|15
Septibyte 0 0 0 0of|o 4

0 0 0 1 7

1 0 0 0 8 10(11{12)13 |14

1 0 0 1 10(11|12({13|14 (15
Sextibyte 0 0 0 0 (O 4

0 0 1 0 6|7

1 0 0 0 819110111213

1 0 1 0 10(11|12(13|14 (15
Quintibyte 0 0 0 0 (O 4

0 0 1 1 5617

1 0 0 0 8191101112

1 0 1 1 111121314]15
Word 0 0 0 0 (O 3

0 1 0 0 4 516 |7

1 0 0 0 8191|1011

1 1 0 0 1213|1415
Triplebyte 0 0 0 0of|o

0 0 0 1 3

0 1 0 0 4

0 1 0 1 7

1 0 0 0 8 10

1 0 0 1 1011

1 1 0 0 1211314

1 1 0 1 131415
Halfword 0 0 0 0|0

0 0 1 0 3

0 1 0 0 4 (5

0 1 1 0 6|7

1 0 0 0 819

1 0 1 0 1011

1 1 0 0 12113

1 1 1 0 14 15

3-10

TOSHIBA

Chapter 3 Instruction Set Overview and Summary m

X
System
RISC

Access Type Low-Order Bytes Accessed
Mnemonic Address Big endian
Bits (127 9 63 31 0)
3 2 1 O Byte
Byte 0 0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

3-11

TOSHIBA

Chapter 3 Instruction Set Overview and Summary m

X
System
RISC

Table 3-5. Defining Access Types (Little-Endian)

Access Type Low-Order Bytes Accessed
Mnemonic Address Little endian
Bits (127 95 63 31 0)
3 2 1 O Byte
Quadword 0 0 0 0 |15(14)13|12|112|10(9 | 8|7 |6 |5|4]|3 0
Doubleword 0 0 0 0 7165|413 0
1 0 0 0 |15(14)13|12|11|10| 9 | 8
Septibyte 0 0 0 0 4 0
0 0 0 1 7 4
1 0 0 0 1413|1211 |110| 9| 8
1 0 0 1 (15]|14|13(|12|11|10
Sextibyte olofolfo 4 0
0 0 1 0 716 4
1 0 0 0 131211110 9| 8
1 0 1 0 |15(14 1213|1211 |10
Quintibyte 0 0 0 0 4 0
0 0 1 1 716|514
1 0 0 0 12111110 9| 8
1 0 1 1 (15)14(13|12]11
Word 0 0 0 0 3 0
0 1 0 0 716 |5| 4
1 0 0 0 1110 9| 8
1 1 0 0 |15(14 13|12
Triplebyte 0 0 0 0 0
0 0 0 1 3
0 1 0 0 4
0 1 0 1 7
1 0 0 0 10| 9| 8
1 0 0 1 11|10
1 1 0 0 1411312
1 1 0 1 (15]14|13
Halfword 0 0 0 0 0
0 0 1 0 3
0 1 0 0 514
0 1 1 0 716
1 0 0 0 918
1 0 1 0 11|10
1 1 0 0 13|12
1 1 1 0 |15(14

3-12

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

Access Type Low-Order Bytes Accessed
Mnemonic Address Little endian
Bits (127 95 63 31 0)
3 2 1 0 Byte
Byte olo]|o]oO 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 |15

3.3.1.6 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately
following is called a delayed load instruction. The instruction slot immediately following
this delayed load instruction is referred to as the load delay slot.

In the C790 processor, the instruction immediately following a load instruction can use
the contents of the loaded register. In such cases, however, hardware interlocks insert
additional clock cycles. Consequently, scheduling load delay slots can be desirable, both
for performance and R-Series processor compatibility. However, the scheduling of load
delay slots is not absolutely required.

3-13

TOSHIBA

X
Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3.3.2 Computational

Instructions

The instructions in this group perform two’s complement arithmetic, logical operations, or

shifts on integers represented in two's complement notation.

Computational instructions can be either in register (R-type) format, in which both
operands are registers, or in immediate (I-type) format, in which one operand is a 16-bit

immediate.

Computational instructions perform the following operations on register values:

« Arithmetic

e Logical

* Shift

e Multiply
» Divide

These operations fit in the following four categories of computational instructions:

* ALU immediate instructions

e Three-Operand Register-Type instructions
* Shift instructions

e Multiply and Divide instructions

For detailed information of individual instructions, refer to Appendix A.

*Note: The C790 does not support 64-bit Multiply and Divide instructions, DMULT, DMULTU,

DDIV, and DDIVU.

3.3.2.1

ALU Immediate Instructions

Table 3-6. ALU Immediate Instructions

Mnemonic

Description

Defined in

ADDI

Add Immediate

MIPS |

ADDIU

Add Immediate Unsigned

MIPS |

SLTI

Set on Less Than Immediate

MIPS |

SLTIU

Set on Less Than Immediate Unsigned

MIPS |

ANDI

AND Immediate

MIPS |

ORI

OR Immediate

MIPS |

XORI

Exclusive OR Immediate

MIPS |

LUI

Load Upper Immediate

MIPS |

DADDI

Doubleword Add Immediate

MIPS 11l

DADDIU

Doubleword Add Immediate Unsigned

MIPS 11l

3-14

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3.3.2.2 Three Operand Register-Type Instructions

Table 3-7. Three Operand Register-Type Instructions

Mnemonic | Description Defined in
ADD Add MIPS |
ADDU Add Unsigned MIPS |
SUB Subtract MIPS |
SUBU Subtract Unsigned MIPS |
DADD Doubleword Add MIPS 11l
DADDU Doubleword Add Unsigned MIPS 11l
DSUB Doubleword Subtract MIPS 11l
DSUBU Doubleword Subtract Unsigned MIPS 11l
SLT Set Less Than MIPS |
SLTU Set Less Than Unsigned MIPS |
AND AND MIPS |
OR OR MIPS |
XOR Exclusive OR MIPS |
NOR NOR MIPS |
3.3.2.3 Shift Instructions
Table 3-8. Shift Instructions
Mnemonic | Description Defined in
SLL Shift Left Logical MIPS |
SRL Shift Right Logical MIPS |
SRA Shift Right Arithmetic MIPS |
SLLV Shift Left Logical Variable MIPS |
SRLV Shift Right Logical Variable MIPS |
SRAV Shift Right Arithmetic Variable MIPS |
DSLL Doubleword Shift Left Logical MIPS IlI
DSRL Doubleword Shift Right Logical MIPS 11l
DSRA Doubleword Shift Right Arithmetic MIPS Il
DSLL32 Doubleword Shift Left Logical + 32 MIPS 11l
DSRL32 Doubleword Shift Right Logical + 32 MIPS Il
DSRA32 Doubleword Shift Right Arithmetic + 32 MIPS 11l
DSLLV Doubleword Shift Left Logical Variable MIPS Il
DSRLV Doubleword Shift Right Logical Variable MIPS 11l
DSRAV Doubleword Shift Right Arithmetic Variable MIPS IlI

3.3.2.4 Multiply and Divide Instructions

These are the standard MIPS instructions for multiply, divide, and move to/from HI/LO
registers executed on the 10 pipeline’s MAC unit. See also C790-specific Multiply and
Divide instructions discussion.

Table 3-9. Multiply and Divide Instructions

Mnemonic | Description Defined in
MULT Multiply MIPS |
MULTU Multiply Unsigned MIPS |
DIV Divide MIPS |
DIVU Divide Unsigned MIPS |
MFHI Move From HI MIPS |
MTHI Move To HI MIPS |
MFLO Move From LO MIPS |
MTLO Move To LO MIPS |

3.3.2.5 64-Bit Operations

The result of operations that use incorrect sign-extended 32-bit values for 64-bit
operations is unpredictable.

3-15

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3.3.3 Jump and Branch Instructions

The architecture defines PC-relative conditional branches, a PC-region unconditional
jump, an absolute (register) unconditional jump, and a similar set of procedure calls that
record a return link address in a general register. For convenience, these are all referred
to here as branches.

All branches have an architectural delay of one instruction. When a branch is taken, the
instruction immediately following the branch instruction, in the branch delay slot, is
executed before the branch to the target instruction takes place. Conditional branches
come in two versions that treat the instruction in the delay slot differently when the
branch is not taken and execution falls through. The ‘branch’ instructions execute the
instruction in the delay slot, but the ‘branch likely’ instructions do not. (They are said to
‘nullify’ it.)

By convention, if an exception or interrupt prevents the completion of an instruction
occupying a branch delay slot, the instruction stream is continued by re-executing the
branch instruction. To permit this, branches must be restartable; procedure calls may not
use the register in which the return link is stored (usually register 31) to determine the
branch target address.

For detailed information of individual instructions, refer to Appendix A. Branch on
Coprocessor instructions are covered under coprocessor’s discussions.

3.3.3.1 Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and
Link instructions, both of which are J-type instructions. In J-type format, the 26-bit target
address shifts 2 bits and combines with the high-order 4-bits of the current program
counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump
Register or Jump and Link Register instructions. Both are R-type instructions that take
the 32-bit byte address contained in one of the general purpose registers.

Table 3-10. Jump Instructions Jumping Within a 256 MByte Region

Mnemonic | Description Defined in
J Jump MIPS |
JAL Jump and Link MIPS |

Table 3-11. Jump Instructions to Absolute Address

Mnemonic | Description Defined in
JR Jump Register MIPS |
JALR Jump and Link Register MIPS |

3-16

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3.3.3.2 Branch Instructions

All branch instruction target addresses are computed by adding the address of the
instruction in the branch delay slot to the 16-bit offset (shifts left 2 bits and is sign-
extended to 32-bits). All branches occur with a delay of one instruction.

In case of a Branch Likely instruction, if a condition is not taken, the instruction in the
delay slot is nullified.

Table 3-12. PC-Relative Conditional Branch Instructions Comparing 2 Registers

Mnemonic | Description Defined in
BEQ Branch on Equal MIPS |
BNE Branch on Not Equal MIPS |
BLEZ Branch on Less Than or Equal to Zero MIPS |
BGTZ Branch on Greater Than Zero MIPS |
BEQL Branch on Equal Likely MIPS 11
BNEL Branch on Not Equal Likely MIPS Il
BLEZL Branch on Less Than or Equal to Zero Likely [MIPS I
BGTZL Branch on Greater Than Zero Likely MIPS Il

Table 3-13. PC-Relative Conditional Branch Instructions Comparing Against Zero

Mnemonic | Description Defined in
BLTZ Branch on Less Than Zero MIPS |
BGEZ Branch on Greater Than or Equal to Zero MIPS |
BLTZAL Branch on Less Than Zero and Link MIPS |
BGEZAL Branch on Greater Than or Equal to Zero and [MIPS |

Link
BLTZL Branch on Less Than Zero Likely MIPS 11
BGEZL Branch on Greater Than or Equal to Zero Likely|MIPS I
BLTZALL Branch on Less Than Zero and Link Likely MIPS 11
BGEZALL Branch on Greater Than or Equal to Zero and |MIPS Il
Link Likely

3-17

TOSHIBA

Chapter 3 Instruction Set Overview and Summary m

X
System
RISC

3.3.4 Miscellaneous Instructions

3.34.1

3.34.2

Exception Instructions

Exception instructions have as their sole purpose causing an exception that will transfer
control to a software exception handler in the kernel. System call and breakpoint
instructions cause exceptions unconditionally. The trap instructions cause exceptions
conditionally based upon the result of a comparison. For detail of these instructions, refer
to the individual instruction as described in Appendix A.

Table 3-14. Exception Instructions

Mnemonic | Description Defined in
BREAK Breakpoint MIPS |
SYSCALL System Call MIPS |
TGE Trap if Greater or Equal MIPS Il
TGEU Trap if Greater or Equal Unsigned MIPS 11
TLT Trap if Less Than MIPS Il
TLTU Trap if Less Than Unsigned MIPS 1l
TEQ Trap if Equal MIPS Il
TNE Trap if Not Equal MIPS 11
TGEI Trap if Greater or Equal Immediate MIPS Il
TGEIU Trap if Greater or Equal Immediate Unsigned |[MIPS Il
TLTI Trap if Less Than Immediate MIPS Il
TLTIU Trap if Less Than Immediate Unsigned MIPS 11
TEQI Trap if Equal Immediate MIPS Il
TNEI Trap if Not Equal Immediate MIPS 1l

Serialization Instructions

The order in which memory accesses from load and store instructions appear outside the
C790 is not specified by the architecture. The SYNC (or SYNC.L) instruction creates a
point in the executing instruction stream at which the relative order of some loads and
store is known. Loads and stores executed before the SYNC (or SYNC.L) are retired before
loads and stores after the SYNC (or SYNC.L) can start.

In order to guarantee the completion of certain instructions a SYNC.P instruction can be
used. Instructions executed before a SYNC.P instruction are completed before instructions
after the SYNC.P can start. For detail of this instruction refer to SYNC instruction as
described in Appendix A.

Table 3-15. Serialization Instructions

Mnemonic

Description

Defined in

SYNC?

Synchronization

MIPS Il

2 This includes the SYNC, SYNC.L and SYNC.P instructions.

3-18

TOSHIBA

X
Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3.3.4.3 MIPS IV Instructions

The C790 supports a part of the MIPS 1V instructions: Conditional Move instructions and

Prefetch instruction.

Conditional move operations allow ‘IF’ statements to be represented without branches.
‘THEN’ and ‘ELSE’ clauses are computed unconditionally and the results are placed in a
temporary register. Conditional move operations then transfer the temporary results to

their true register.

The Prefetch instruction fetches data expected to be used in the near future and places it

in the data cache.

For detail of these instructions, refer to the individual instruction as described in

Appendix A.

Table 3-16. MIPS IV Instructions

Mnemonic

Description

Defined in

MOVN

Move Conditional on Not Zero

MIPS IV

MOVZ

Move Conditional on Zero

MIPS IV

PREF

Prefetch

MIPS IV

3-19

TOSHIBA

Chapter 3 Instruction Set Overview and Summary m

X
System
RISC

3.3.5 System Control Coprocessor (COPO) Instructions

COPO instructions perform operations specifically on the System Control Coprocessor
registers to manipulate the memory management, exception handling, performance
monitor, and debug facilities of the processor.

COPO instructions are enabled if the processor is in Kernel mode, or if bit 28 (CU) is set in
the Status register. Otherwise executing one of these instructions generates a Coprocessor

Unusable Exception.

For details of COPO instructions refer to Appendix C.

Table 3-17. System Control Coprocessor Instructions

Mnemonic | Description Defined in
BCOF Branch on Coprocessor 0 False MIPS |
BCOT Branch on Coprocessor 0 True MIPS |
BCOFL Branch on Coprocessor 0 False Likely MIPS Il
BCOTL Branch on Coprocessor 0 True Likely MIPS 11
CACHE Cache Operation R4000
DI Disable Interrupt C790
El Enable Interrupt C790
ERET Exception Return R4000
TLBR Read Indexed TLB Entry R4000
TLBWI Write Index TLB Entry R4000
TLBWR Write Random TLB Entry R4000
TLBP Probe TLB for Matching Entry R4000
MTCO Move To System Control Coprocessor R4000
MFECO Move From System Control Coprocessor R4000
MTPC Move To Performance Counter C790
MFPC Move From Performance Counter C790
MTPS Move To Performance Event Specifier C790
MFPS Move From Performance Event Specifier C790
MTBPC Move To Breakpoint Control Register C790
MFBPC Move From Breakpoint Control Register C790
MTDAB Move To Data Address Breakpoint Register C790
MFDAB Move From Data Address Breakpoint Register |C790
MTDABM Move To Data Address Breakpoint Mask C790
Register

MFDABM Move From Data Address Breakpoint Mask C790
Register

MTIAB Move To Instruction Address Breakpoint C790
Register

MFIAB Move From Instruction Address Breakpoint C790
Register

MTIABM Move To Instruction Address Breakpoint Mask [(C790
Register

MFIABM Move From Instruction Address Breakpoint C790
Mask Register

MTDVB Move To Data Value Breakpoint Register C790

MFDVB Move From Data Value Breakpoint Register C790

MTDVBM Move To Data Value Breakpoint Mask Register [C790

MFDVBM Move From Data Value Breakpoint Mask C790
Register

3-20

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3.3.6 Coprocessor 1 (COP1)

Coprocessor instructions perform operations in their respective coprocessors. Coprocessor
loads and stores are I-type, and coprocessor computational instructions have coprocessor-
dependent formats. Coprocessor load and store instructions are summarized in 3.3.1.3.

3.3.6.1 Coprocessor 1 (COP1) Instructions

COP1 instructions are enabled if bit 29 (CU) is set in the Status register. Otherwise
executing one of these instructions generates a Coprocessor Unusable Exception. For
details of COPL1 instructions refer to Appendix D.

Table 3-18. Coprocessor 1 Instructions

Mnemonic | Description Defined in
BC1F Branch on Floating Point False MIPS |
BC1T Branch on Floating Point True MIPS |
LWC1 Load Word to Floating Point MIPS |
LDC1 Load Doubleword to Floating Point MIPS 1l
SWC1 Store Word from Floating Point MIPS |
SDC1 Store Doubleword from Floating Point MIPS 1|
MFC1 Move Word from Floating Point MIPS |
MTC1 Move Word to Floating Point MIPS |
DMFC1 Move Doubleword from Floating Point MIPS Il
DMTC1 Move Doubleword to Floating Point MIPS 11l
CFC1 Move Control Word from Floating Point MIPS |
CTC1 Move Control Word to Floating Point MIPS |
CVT.D.fmt Floating Point Convert to Double Floating Point [MIPS |, 1lI
CVT.L.fmt Floating Point Convert to Long Fixed Point MIPS Il
CVT.S.fmt Floating Point Convert to Single Floating Point [MIPS |, IlI
CVT.W.fmt Floating Point Convert to Word Fixed Point MIPS |
ADD.fmt Floating Point Add MIPS |
SUB.fmt Floating Point Subtract MIPS |
MUL.fmt Floating Point Multiply MIPS |
DIV.fmt Floating Point Divide MIPS |
ABS.fmt Floating Point Absolute MIPS |
MOV.fmt Floating Point Move MIPS |
NEG.fmt Floating Point Negate MIPS |
SQRT.fmt Floating Point Square Root MIPS 11
C.cond.fmt Floating Point Compare MIPS |
CEIL.L.fmt Floating Point Ceiling Convert to Long Fixed MIPS 1l

Point
CEIL.W.fmt Floating Point Ceiling Convert to Word Fixed MIPS 1l
Point
FLOOR.L.fmt Floating Point Floor Convert to Long Fixed Point [MIPS 111
FLOOR.W.fmt |Floating Point Floor Convert to Word Fixed Point [MIPS ||
ROUND.L.fmt Floating Point Round to Long Fixed Point MIPS Il
ROUND.W.fmt |Floating Point Round to Word Fixed Point MIPS Il
TRUNC.L.fmt Floating Point Truncate to Long Fixed Point MIPS 11l
TRUNC.W.fmt |Floating Point Truncate to Word Fixed Point MIPS Il

3-21

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3.3.7 C790-Specific Instructions

The C790 extends its instruction set from the original MIPS architecture. The following
instructions are supported:

* Three-operand Multiply and Multiply/Add instructions
« Multiply instructions for Pipeline 1

* Multimedia instructions

« Enable interrupt and Disable interrupt instructions

For more information, refer to Appendices B and C.
3.3.7.1 Integer Multiply / Divide Instructions

The standard MIPS instructions for multiply, divide and move to / from HI / LO registers
execute on the 10 pipeline’s MAC unit. A complete set of new instructions has also been
defined to execute on the I1 pipeline’s MAC unit. All of these instructions are shown in the
following table.

Table 3-19. C790-Specific Multiply and Divide Instructions

OpCode | Description OpCode Description

(Three Operand Multiply and Multiply-add) DIV1 Divide 1

MADD Multiply/Add DIvUul Divide Unsigned 1
MADDU Multiply/Add Unsigned MADD1 Multiply/Add 1

MULT Multiply(3-operand) MADDU1 Multiply/Add Unsigned 1
MULTU Multiply Unsigned(3-operand) MFHI1 Move From HI 1
(Multiply Instructions for Pipeline 1) MFLO1 Move From LO 1
MULT1 Multiply 1 MTHI1 Move To HI 1

MULTU1 Multiply Unsigned 1 MTLO1 Move To LO 1

The C790 supports three-operand multiply instructions that store the multiply result to a
general purpose register in addition to the LO register. These instructions, as such, don’t
have to use the MFLO instruction to move data from the LO register to a general purpose
register.

* MULTTI,rs,rt HI]| LO =rs * rt (signed)
rd = new LO contents

* MULTUTId, rs,rt HI]] LO=rs* rt (unsigned)
rd = new LO contents

The C790 also supports new multiply-add instructions, MADD and MADDU. These
instructions execute multiply-accumulate operations using the HI and LO registers as
accumulators.

* MADDTId,rs, rt HI || LO +=rs* rt (signed)
rd = new LO contents

 MADDUTId, rs,rt HI |] LO +=rs* rt (unsigned)
rd = new LO contents

3-22

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3.3.7.2 Multimedia Instructions

The C790 defines a new set of instructions to support multimedia applications. These

instructions are shown in Table 3-20. Most of these instructions do parallel operations on
data by combining the execution units of the two pipelines (10 and 11). They form a 128-bit

path and then do parallel operations on either two 64-bit data items, four 32-bit data

items, eight 16-bit data items, or sixteen 8-bit data items.

In order to support the 128-bit datapath, 128-bit load/store operations are also

implemented.
Table 3-20. Multimedia Instructions
OpCode Description OpCode Description
(Arithmetic) (Absolute)
PADDB Parallel Add Byte PABSH Parallel Absolute Halfword
PSUBB Parallel Subtract Byte PABSW Parallel Absolute Word
PADDH Parallel Add Halfword (Multiply and Divide)
PSUBH Parallel Subtract Halfword PMULTW Parallel Multiply Word
PADDW Parallel Add Word PMULTUW Parallel Multiply Unsigned
PSUBW Parallel Subtract Word Word
PADSBH Parallel Add/Subtract PDIVW Parallel Divide Word
Halfword PDIVUW Parallel Divide Unsigned
PADDSB Parallel Add with Signed Word
Saturation Byte PMADDW Parallel Multiply/Add Word
PSUBSB Parallel Subtract with Signed PMADDUW Parallel Multiply/Add
Saturation Byte Unsigned Word
PADDSH Parallel Add with Signed PMSUBW Parallel Multiply/Subtract
Saturation Halfword Word
PSUBSH Parallel Subtract with Signed PMFHI Parallel Move From HlI
Saturation Halfword PMFLO Parallel Move From LO
PADDSW Parallel Add with S|gned PMTHI Parallel Move To HI
Saturation Word
- - PMTLO Parallel Move To LO
PSUBSW Parallel Subtract with Signed -
Saturation Word PMULTH Parallel Multfply Halfword
PADDUB Parallel Add with Unsigned PMADDH Parallel Multiply/Add
Saturation Byte Halfword :
PSUBUB Parallel Subtract with PMSUBH Parallel Multiply/Subtract
Unsigned Saturation Byte Halfword
PADDUH Parallel Add with Unsigned PMFHL Parallel Move From HILO
Saturation Halfword PMTHL Parallel Move To HI/LO
PSUBUH Parallel Subtract with PHMADH Parallel Horizontal
Unsigned Saturation Multiply/Add Halfword
Halfword PHMSBH Parallel Horizontal
PADDUW Parallel Add with Unsigned Multiply/Subtract Halfword
Saturation Word PDIVBW Parallel Divide Broadcast
PSUBUW Parallel Subtract with Word
Unsigned Saturation Word
(Min/Max)
PMAXH Parallel Maximum Halfword
PMINH Parallel Minimum Halfword
PMAXW Parallel Maximum Word
PMINW Parallel Minimum Word

3-23

>
. . S
TOSHIBA Chapter 3 Instruction Set Overview and Summary m Ric”
OpCode Description OpCode Description
(SA Operation) (Quadword Load Store)
MFSA Move from SA Register LQ Load Quadword
MTSA Move to SA Register SQ Store Quadword
MTSAB Move Byte Count to SA (Pack/Extend)
Register PPACB Parallel Pack To Byte
MTSAH I\R/I:vieStZ?Ifword Count to SA PPACH Parallel Pack To Halfword
- g PINTEH Parallel Interleave Even
(Shift) Halfword
PSLLH Parallel Shift Left Logical PPACW Parallel Pack To Word
Halfword
—— - PEXTUB Parallel Extend Upper From
PSRLH Parallel Shift Right Logical Byte
Halfword
—— - - PEXTLB Parallel Extend Lower From
PSRAH Parallel Shift Right Arithmetic Bvte
Halfword Y
- - PEXTUH Parallel Extend Upper From
PSLLW Parallel Shift Left Logical Halfword
Word
—— - PEXTLH Parallel Extend Lower From
PSRLW Parallel Shift Right Logical Halfword
Word
PEXTUW Parallel Extend U F
PSRAW Parallel Shift Right Arithmetic Jooe & Eend Hpperrom
Word
PEXTLW Parallel Extend L F
PSLLVW Parallel Shift Left Logical W © - end FoWerrom
Variable Word PEXT5 Parallel Extend fi 5 bit
PSRLVW Parallel Shift Right Logical ara’e’ =xtend from » bits
Variable Word PPAC5 Parallel Pack to 5 bits
PSRAVW Parallel Shift Right Arithmetic (Others)
Variable Word PCPYH Parallel Copy Halfword
(Logical) PCPYLD Parallel Copy Lower
PAND Parallel AND Doubleword
POR Parallel OR PCPYUD Parallel Copy Upper
PXOR Parallel XOR Doubleword
PNOR Parallel NOR PREVH Parallel Reverse Halfword
PINTH Parallel Interleave Halfword
(Compare) PEXEH Parallel Exch E
PCGTB Parallel Compare for Greater Hglrfe\imgrd xehange Even
Than Byte PEXCH Parallel Exch Cent
PCEQB Parallel Compare for Equal H?alrf?/vgrd xchange tenter
Byte
PCGTH Parallel Compare for Greater PEXEW Svac:zlel Exchange Even
Than Halfword PEXCW Parallel Exch Cent
PCEQH Parallel Compare for Equal Wa(:?de xchange tenter
Halfword PROT3W Parallel Rotate 3 d
PCGTW Parallel Compare for Greater ara’e’ Rotate WOI" -
Than Word QFSRV 8u§\dg\|/ord Funnel Shift Right
PCEQW Parallel Compare for Equal anavie -
Word PLZCW Parallel Leading Zero Count
Word

3-24

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3.4 User Instruction Latency and Repeat Rate

Table 3-21 shows the latencies and repeat rates for all user instructions executed in 10, 11,
BR, LS and C1 execution pipelines. Kernel instructions are not included, nor are
instructions not issued to these execution pipelines. See Figure 2-1 and Figure 2-4 for
execution pipeline name.

Table 3-21. Latencies and Repeat Rates for User Instruction

Instruction Type Execution Latency ngteeat Comment
Integer Instructions

Add/Sub/Logical/Set 10/11 1 1

MFE/MT/HI/LO 10/11 1 1

Shift/LUI 10/11 1 1

Branch/Jump BR 1 1

Conditional Move 10/11 1 1

MULT/MULTU 10 4 2 Latency relative to
Lo/Hi/GPR

MULT1/MULTU1 11 4 2 Latency relative to
Lo1/Hil/GPR

DIV/DIVU 10 37 37 Latency relative to
Lo/Hi

DIV1/DIVU1 11 37 37 Latency relative to
Lo1/Hil

MADD/MADDU 10 4 2 Latency relative to
Lo/Hi/GPR

MADD1/MADDU1 11 4 2 Latency relative to
Lo1/Hil/GPR

Load LS 1 1 Assuming cache hit

Store LS - 1 Assuming cache hit

Multimedia Multiply 10+11 4 2

Multimedia Multiply/Add 10+11 4 2

Multimedia Divide 10+11 37 37

Floating-Point Instructions

ADD.S/SUB.S/C.cond.S Cl 6 2

ADD.D/SUB.D/C.cond.D Cl 8 2

ABS/NEG/MOV Cl 6 2

CVT Cl 8 2

MUL.S Cl 6 2

MUL.D Cl 8 2

DIV.S C1l 21 15

DIV.D Cl 35 29

SQRT.S Cl 21 15

SQRT.D Cl 35 29

MFC1/MTC1 C1+LS 2 1

DMFC1/DMTC1 Cl+LS 2 1

CFC1/CTC1 C1+LS 2 1

LWC1/LDC1 C1+LS 2 1 Assuming cache hit

SWC1/SDC1 C1+LS - 1

3-25

X
TOSHIBA Chapter 3 Instruction Set Overview and Summary mﬁﬁtcem

3-26

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4. CPU and COPO Registers

This chapter describes the CPU registers and the System Control Coprocessor (COPOQ)
registers.

The CPU registers group consists of:

e General Purpose Registers (GPRS),

* Multiply and Divide registers (HI and LO registers) that hold the results of
integer multiply and divide,

* The SA register which is used by the funnel shift instructions,

* The Program Counter (PC) register.

The COPO registers control the processor state and report its status. These registers can
be read using the MFCO instruction and written using the MTCO instruction.

4-1

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.1 CPU Registers

The central processing unit (CPU) provides the following registers:

e 32 128-bit General Purpose Registers (GPR)

* Four registers that hold the results of integer multiply and divide operations
(HI0, LOO, HI1, and LO1)

e Shift Amount (SA) register

¢ Program Counter

The C790 has 128-bit-wide General Purpose Registers (GPRs). The upper 64 bits of the
GPRs are only used by the C790-specific “Quad Load/Store”, and “Multimedia (Parallel)”
instructions.

HI0 and LOQ are the standard 64-bit HI and LO registers. HI1 and LO1, which are the
upper 64 bits of the 128-bit HI and LO registers, are only used by the new multiply and
divide instructions, such as MULT1, MULTU1, DIV1, DIVU1, MADD1, MADDU1, MFHI1,
MFLO1, MTHI1, and MTLO1. All these instructions are equivalent to existing
instructions which operate on HI0 and LOO registers.

The Shift Amount (SA) register specifies the shift amount used by the funnel shift
instruction. The shaded registers in Figure 4-1 are new architecturally-visible registers
that are specific to the C790.

4-2

TOSHIBA

X
Chapter 4 CPU and COPO Registers mﬁﬁtcem

$0
$1
$2

$31

HI

LO

General Purpose Registers

(127 64 63 0)
63 0 63
$0
$1
$2
$31

HI and LO Register

HI1 HI (HI0)
LO1 LO (LOO0)
SA Register
31 0
SA

Program Counter

PC

Figure 4-1. CPU Registers

4-3

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.1.1 General Purpose Registers

The standard 64-bit CPU general purpose registers have been extended to 128-bit
registers. New instructions have been defined to use the upper 64-bits of these registers.

Two of the CPU general purpose registers have special assigned functions:

e r0is hardwired to a value of zero, and can be used as the target register for any
instruction whose result is to be discarded. r0O can also be used as a source when
a zero value is needed.

e r31is the link register used by the Jump and Link instructions. In general, it
should not be used by other instructions.

4.1.2 HIl and LO Registers

The standard 64-bit HI and LO registers have been extended to 128-bit registers. New
instructions have been defined to use the upper 64-bits of these registers. HI0O and LOO
are the standard 64-bit HI and LO registers. HI1 and LO1 are the upper 64 bits of the
128-bit HI and LO registers

These four registers (HI0, LOO, HI1, LO1) store:

* the product of integer multiply operations, or

* the accumulation of integer multiply-accumulate operations, or

e the quotient (in LOO or LO1) and remainder (in HI0 or HI1) of integer divide
operations.

4.1.3 Shift Amount (SA) Register

The SA register specifies the shift amount used by the funnel shift instruction. This is a
new architecturally-visible register and it needs to be saved and restored as part of the
processor state. New instructions have been defined to move values between this register
and the general purpose registers.

4.1.4 Program Counter (PC)

The Program Counter (PC) holds the address of the instruction which is being executed.
The PC is incremented automatically by 4 when a non-control-transfer instruction (that is:
branch, jump, ERET, SYSCALL, or TRAP) is executed. Control-transfer instructions
change the value of the PC to the target address specified by them. An exception also
changes the contents of the PC to the specified exception vector address.

4-4

TOSHIBA

X
Chapter 4 CPU and COPO Registers mﬁﬁtcem

4.2 System Control Coprocessor (COPO) Registers

CORPO registers are listed in Table 4-1.

Table 4-1. Coprocessor 0 Registers

Register | Register Description Purpose
No. Name

0 Index Programmable register to select TLB entry for reading or writing] MMU

1 Random Pseudo-random counter for TLB replacement MMU

2 EntryLo0O Low half of TLB entry for even PFN (Physical page number) MMU

3 EntryLol Low half of TLB entry for odd PFN (Physical page number) MMU

4 Context Pointer to kernel virtual PTE table in 32-bit addressing mode Exception
5 PageMask Mask that sets the TLB page size MMU

6 Wired Number of wired TLB entries MMU

7 (Reserved) Undefined Undefined
8 BadVAddr Bad virtual address Exception
9 Count Timer compare Exception
10 EntryHi High half of TLB entry (Virtual page number and ASID) MMU

11 Compare Timer compare Exception
12 Status Processor Status Register Exception
13 Cause Cause of the last exception taken Exception
14 EPC Exception Program Counter Exception
15 PRId Processor Revision Identifier MMU

16 Config Configuration Register MMU

17 (Reserved) Undefined Undefined
18 (Reserved) Undefined Undefined
19 (Reserved) Undefined Undefined
20 (Reserved) Undefined Undefined
21 (Reserved) Undefined Undefined
22 (Reserved) Undefined Undefined
23 BadPAddr Bad physical address Exception
24 Debug This is used for Debug function Debug

25 Perf Performance Counter and Control Register Exception
26 (Reserved) Undefined Undefined
27 (Reserved) Undefined Undefined
28 TagLo Cache Tag register (low bits) Cache

29 TagHi Cache Tag register (high bits) Cache

30 ErrorEPC Error Exception Program Counter Exception
31 (Reserved) Undefined Undefined

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.1 Index Register (0)

31 30 6 5 0
P 0 Index
1 25 6

Figure 4-2. Index Register

The Index register is a 32-bit read/write register containing six bits to index an entry in
the TLB. The high-order bit of the register records the success or failure of a TLB Probe
(TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read (TLBR) or TLB
Write Index (TLBWI) instructions.

Table 4-2 shows the format of the Index register; Table 4-2 describes the Index register
fields.

Table 4-2. Index Register Field Description

Field | Bits Description Type Initial
Value
P 31 Probe failure. Set to 1 when the previous TLB Probe Read/Write Undefined
(TLBP) instruction was unsuccessful.
Index 5:0 Index to the TLB entry affected by the TLB Read and Read/Write Undefined
TLB Write instructions.
0 30:6 Reserved. Must be written as zeroes, and returns zeroes Read-only 0
when read.

4-6

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.2 Random Register (1)

31 6 5 0

0 Random
26 6

Figure 4-3. Random Register

The Random register is a read-only register. The least significant six bits index an entry
in the TLB. This register decrements every cycle an instruction is executed. Its value
ranges between an upper and a lower bound, as follows:

« A lower bound is set by the number of TLB entries reserved for exclusive use by
the operating system (the contents of the Wired register).
e An upper bound is set by the total number of TLB entries (47 maximum).

The Random register specifies the entry in the TLB that is affected by the TLB Write
Random (TLBWR) instruction. The register does not need to be read for this purpose;
however, the register is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound upon
system reset. This register is also set to the upper bound when the Wired register is
written.

Figure 4-3 shows the format of the Random Register; Table 4-3 describes the Random
Register fields.

Table 4-3. Random Register Fields

Field Bits Description Type Initial
Value
Random 5:0 TLB Random index. Read-only Upper
bound (47)
0 31:6 Reserved. Must be written as zeros, and returns Read-only 0
zeroes when read.

4-7

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.3 EntryLoO Register (2), and EntryLol1 Register (3)

EntryLoO
31 26 25 6 5 3 2 10
0 PEN C D V |G
20 3 1 1 1

EntryLol
31 26 25 6 5 3 2 1 0
0 PFN C D vV |G
20 3 1 1 1

Figure 4-4. EntryLoO and EntryLol Registers

The EntryLo0O and EntryLol registers consist of two registers that have similar format:

* Entryl o0 is used for even virtual pages.
* Entrylol is used for odd virtual pages.

The EntryLoO and EntrylLol registers are read/write registers. They hold the physical
page frame number (PFN) of the TLB entry for even and odd pages, respectively, when
performing TLB read and write operations.

Figure 4-4 shows the format of the EntryL o0 and EntryLol Registers; Table 4-4 describes
the EntrylL o0 and Entryl o1 Register fields.

Table 4-4. EntrylLo0O and EntryLol Register Fields

Field | Bits Description Type Initial
Value
PEN 25:6 [Page frame number; the upper bits of the physical address. Read/Write Undefined
C 5:3 Specifies the TLB page coherency attribute. Read/Write Undefined

000(0): Reserved

001(1): Reserved

010(2): Uncached

011(3): Cacheable, write-back, write allocate
100(4): Reserved

101(5): Reserved

110(6): Reserved

111(7): Uncached Accelerated

D 2 Dirty. If this bit is set, the page is marked as dirty and therefore Read/Write Undefined

writable. This bit is actually a write-protect bit that software can use
to prevent alteration of data.

\Y 1 Valid. If this bit is set, it indicates that the TLB entry is valid; Read/Write Undefined
otherwise, a TLBL or TLBS miss will occur.

G 0 Global. If this bit is set in both EntryLo0 and EntryLo1, then the Read/Write Undefined
processor ignores the ASID during TLB look-up.

0 31:26 |Reserved. Must be written as zeroes, and returns zeroes when Read-only 0
read.

EntryLoO[31] is reserved for Kernel use. It contains the written
value. This bit has no effect on any CPU or TLB operation.

Reserved codes in C field may not be written correctly into TLB entry by TLBWI or
TLBWR instruction.

4-8

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.4 Context Register (4)

31 23 22 4 3 0

PTEBase BadVPN2 0
9 19

Figure 4-5. Context Register Format

The Context register is a read/write register containing the pointer to an entry in the page
table entry (PTE) array. This array is an operating system data structure that stores
virtual-to-physical address translations. When there is a TLB miss, the CPU loads the
TLB with the missing translation from the PTE array. Normally, the operating system
uses the Context register to address the current page map which resides in the kernel-
mapped segment, kseg3. The Context register duplicates some of the information provided
in the BadVAddr register, but the information is arranged in a form that is more useful
for a software TLB exception handler. Figure 4-5 shows the format of the Context register;
Table 4-5 describes the Context register fields.

Table 4-5. Context Register Fields

Field Bits Description Type Initial
Value
PTEBase 31:23 This field is a read/write field for use by the operating Read/Write Undefined

system. It is normally written with a value that allows the
operating system to use the Context register as a pointer
into the current PTE array in memory.

BadVPN2 22:4 This field is written by hardware on a miss. It contains the Read-only Undefined
virtual page number (VPN) of the most recent virtual
address that did not have a valid translation.

0 3:0 Reserved. Must be written as zeros, and returns zeroes Read-only 0
when read.

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that caused the TLB
miss; bit 12 is excluded because a single TLB entry maps to an even-odd page pair. For a 4
KB page size, this format can directly address the pair-table of 8-byte PTEs. For other
page and PTE sizes, shifting and masking this value produces the appropriate address.

4-9

X
System

TOSHIBA Chapter 4 CPU and COPO Registers mmsc

4.2.5 PageMask Register (5)

31 25 24 13 12

0 MASK 0
12 13

Figure 4-6. PageMask Register

The PageMask register is a read/write register used for reading or writing the TLB. It
holds a comparison mask that sets the variable page size for each TLB entry, as shown in

Table 4-6.
Table 4-6. PageMask Register Field

Field Bits Description Type Initial Value
Undefined

MASK 24:13 Page comparison mask. Read/Write
0000 0000 0000: Page Size = 4 Kbytes
0000 0000 0011: Page Size = 16 Kbytes
0000 0000 1111: Page Size = 64 Kbytes
0000 0011 1111: Page Size = 256 Kbytes
0000 1111 1111: Page Size = 1 Mbytes
0011 1111 1111: Page Size = 4 Mbytes
1111 1111 1111: Page Size = 16 Mbytes
0 31:25, Reserved. Must be written as zeros, and returns zeroes | Read-only 0
12:0 when read.

TLB read and write operations use this register as either a source or a destination; when
virtual addresses are presented for translation into physical address, the corresponding
bits in the TLB identify which virtual address bits among bits 24:13 are used in the
comparison. When the Mask field is not one of the values shown in Table 4-6, the

operation of the TLB is undefined.

4-10

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.6 Wired Register (6)

31 6 5 0

0 Wired
26 6

Figure 4-7. Wired Register

The Wired register is a read/write register that specifies the boundary between the wired
and random entries of the TLB as shown in Figure 4-8. Wired entries are fixed, non-
replaceable entries which cannot be overwritten by a TLB write operation. Random

entries can be overwritten. Figure 4-7 shows the format of the Wired register. Table 4-7
describes the register fields.

The Wired register is set to 0 upon system reset. Writing this register also sets the
Random register to the value of its upper bound as shown in Figure 4-8.

TLB

47

Random
entries

<«—— Wired Register
value

Wired entries

Figure 4-8. Wired Register Boundary

Writing a value greater than 47 into this register produces undefined results.

Table 4-7. Wired Register Field Descriptions

Field Bits Description Type Initial Value
Wired 5:0 TLB Wired boundary (the number of wired TLB Read/Write 0
entries)
0 31:6 Reserved. Must be written as zeros, and returns Read-only 0
zeroes when read.

4-11

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.7 BadVAddr Register (8)

31

BadVAddr
32

Figure 4-9. BadVAddr Register
The Bad Virtual Address register (BadVAddr) is a read-only register that displays the
most recent virtual address that caused one of the following exceptions: TLB Invalid, TLB
Modified, TLB Refill, or Address Error exceptions.

Figure 4-9 shows the format of the BadVAddr register; Table 4-8 describes the register
fields.

Table 4-8. BadVAddr Register Field

Field Bits Description Type Initial
Value
BadVAddr 31:.0 The most recent virtual address that cause a TLB Invalid, Read-only Undefined
TLB modified, TLB Refill, or Address Error exception.

Note: The BadVAddr register does not save any information for bus errors, since bus
errors are not addressing errors.

4-12

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.8 Count Register (9)

31

Count

32

Figure 4-10. Count Register

The Count register acts as a real-time timer. It is incremented every CPU clock cycle. The

timer interrupt signaled through IP[7] can be disabled through the interrupt mask bit,
IM[7]. This register can be read or written.

Figure 4-10 shows the format of the Count register. Table 4-9 describes the register fields.

Table 4-9. Count Register Field

Field Bits Description Type Initial Value
Count 31:0 32-bit timer, incrementing at the CPU clock rate. Read/Write Undefined

4-13

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.9 EntryHi Register (10)

31 13 12 8 7 0

VPN2 0 ASID
19 5 8

Figure 4-11. EntryHi Register

The EntryHi register holds the high-order bits of a TLB entry for TLB read and write

operations. The EntryHi register is accessed by the TLB Probe, TLB Write Random, TLB
Write Indexed, and TLB Read Indexed instructions.

When either a TLB Refill, TLB Invalid, or TLB Modified exception occurs, the EntryHi

register is loaded with the virtual page number (VPN2) and the ASID of the virtual
address that did not have a matching TLB entry.

Figure 4-11 shows the format of the EntryHi register. Table 4-10 describes the register
fields.

Table 4-10. EntryHi Register Fields

Field Bits Description Type Initial Value

VPN2 31:13 Virtual page number divided by two (maps to two Read/Write Undefined
pages).

ASID 7:0 Address space ID field. An 8-bit field that lets multiple Read/Write Undefined

processes share the TLB; each process can have a
distinct mapping of otherwise identical virtual page
numbers.

0 12:8 Reserved. Must be written as zeroes, and returns Read-only 0
zeroes when read.

4-14

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.10 Compare Register (11)

31 0

Compare

32

Figure 4-12. Compare Register

The Compare register acts as a timer (see also the Count register); it maintains a stable
value that does not change on its own. When the value of the Count register equals the
value of the Compare register, interrupt bit IP[7] in the Cause register is set. This causes

an interrupt as soon as the interrupt is enabled. Writing a value to the Compare register,
as a side effect, clears the timer interrupt.

For diagnostic purposes, the Compare register is a read/write register. In normal use,

however, the Compare register is write-only. Figure 4-12 shows the format of the Compare
register. Table 4-11 describes the register fields.

Table 4-11. Compare Register Field

Field Bits Description Type Initial
Value
Compare 31:0 The Compare register saves a stable value compared to the Read/Write | Undefined
Count register. When the value of the Count register equals to
the value of the Compare register, interrupt IP[7] occurs.

4-15

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.11 Status Register (12)
31 28 27 26 252423 22 21 1918 17 16 15 14 13 12 11 109 54 32 1 0
Cu O|F| O [D|B 0 C|E|E|IM 0 B| IM 0 K |E|E|E
(CU[3:0]) R E|E H{D| I [[7] E|[3:2] S |R|X
V|V I |E M U |L|L
4 1 1 2 1 1 3 1 1 1 1 2 1 2 5 2 1 11

Figure 4-13. Status Register

The Status register (SR) is a read/write register that contains the operating mode,
interrupt enabling, and the diagnostic states of the processor. Figure 4-13 shows the
format of the Status register. The following paragraphs identify the more important
Status register fields and describe the fields. Some of the important fields include:

The 3-bit Interrupt Mask (IM) field controls the enabling of three interrupt
signals. Interrupts must be enabled before they can be asserted. Interrupts are
recognized by the processor when the corresponding bits are set in both the
Interrupt Mask and the Interrupt Enable fields of the Status register and the
Interrupt Pending field of the Cause register. The C790 does not support
software interrupts. IM[7] corresponds to the internal timer interrupt and
IM[3:2] corresponds to Int[1:0] signals.

The 4-bit Coprocessor Usability (CU) field (CU[3:0]) controls the usability of four
possible coprocessors. Regardless of the CU[0] bit setting, COPO is always
usable in Kernel mode. For all other cases, an access to an unusable coprocessor
causes an exception. C790 supports coprocessor 1 (FPU).

4-16

X
TOSHIBA Chapter 4 CPU and COPO Regjisters mﬁﬁfém

4.2.11.1 Status Register Format

Table 4-12 describes the Status register fields. All bits in the Status register are readable
and writable.

Table 4-12. Status Register Fields

Field | Bits Description Type | Initial
Value
CU 31:28 | Controls the usability of each of the four coprocessor unit numbers. COPO Read/ | Undefined
(CU[3:0]) is always usable when in Kernel mode, regardless of the setting of the Write
CUI0] bit.
1 - usable
0 - unusable
FR 26 Enable additional floating point registers Read/ 0
0 - 16 registers Write
1 - 32 registers
DEV 23 Controls the location of Performance counter and debug/SIO exception Read/ | Undefined
vectors. Write
0 - normal
1 - bootstrap
BEV 22 Controls the location of TLB refill and general exception vectors. Read/ 1
0 - normal Write
1 - bootstrap
CH 18 Cache Hit (tag match and valid state) or Miss indication for last CACHE Hit | Read/ | Undefined
Invalidate and CACHE Hit Write-back Invalidate for the Data cache. Write
0 - miss
1 - hit
EDI 17 EI/DI instruction Enable: When this bit is set, the El and DI instructions Read/ | Undefined

can operate in User, Supervisor and Kernel modes and as such set or clear | Write
the EIE bit to enable or disable all interrupts (except NMI). When this bit is
cleared, El and DI operate as NOPs in User and Supervisor modes and
executes properly in Kernel mode.
EIE 16 Enable IE: This bit enables or disables the IE (Interrupt Enable) bit. This Read/ | Undefined
bit is cleared by the DI instruction and set by the El instruction. Write
0 - disables all interrupts regardless of the value of the IE bit.
1 - enables the IE bit. (All interrupts are enabled if IE=1, EXL=0, and

ERL=0.)
Note: IM enables individual interrupt
IM[7,3:2] | 15, Interrupt Mask: controls the enabling of each of the external and internal Read/ | Undefined
11:10 | interrupts. An interrupt is taken if interrupts are enabled, and the Write

corresponding bits are set in both the Interrupt Mask field of the Status
register and the Interrupt Pending field of the Cause register.

0 - disabled
1 - enabled
Note: The enabling of this bit is valid only when EIE=1, |IE=1, EXL=0 and
ERL=0
BEM 12 Bus Error Mask: controls the updating of the BadPAddr register and Read/ | Undefined
signaling a bus error exception. Write

0 - update BadPAddr and signal a bus error exception.
1 - do not update BadPAddr and stop signaling a bus error
exception. This bit is set to 1 when it is a 0 and a bus error is signaled.

KSU 4:3 Kernel/Supervisor/User Mode bits: Read/ | Undefined
00, - Kernel Write
01, - Supervisor
10, - User

11, - Reserved

4-17

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

Field | Bits Description Type | Initial
Value
ERL 2 Error Level: set by the processor when Reset, NMI, performance counter, | Read/ 1
SIO or debug exception is taken. Write
0 - normal 1 - error
EXL 1 Exception Level: set by the processor when any exception other than Read/ | Undefined
Reset, NMI, performance counter, or debug exception is taken. Write
0 - normal 1 - exception
0 Interrupt Enable Read/ | Undefined
0 - disables all interrupts Write
1 - enables all interrupts (if EIE=1, ERL=0, and EXL=0)
27, Reserved. Must be written as zeroes, and returns zeroes when read. Read- 0
25:24, only
21:19,
14:13,
9:5

4.2.11.2 Status Register Modes and Access States

Fields of the Status register set the modes and access states below.

Interrupt Enable: Interrupts are enabled when all of the following conditions are true:

e Status.lIE = 1,

« and Status.EIE =1,
e and Status.EXL =0,
* and Status.ERL =0

If these conditions are met, setting the /M bits enable the appropriate interrupts.

S10 Enable: A level 2 exception by SIO is enabled when the following condition is true:
e Status.ERL =0

If this condition is met, asserting the SIO signal causes a Debug exception to occur.

Operating Modes: The following CPU Status register bit settings are required for User,
Kernel, and Supervisor modes.

e The Processor is in User mode when KSU = 102 and EXL =0 and ERL = 0.
e The processor is in Supervisor mode when KSU = 01> and EXL = 0 and ERL = 0.
e The processor is in Kernel mode when KSU = 002 or EXL =1 or ERL = 1.

Kernel Address Space Accesses: Access to the kernel address space is allowed when the
processor is in Kernel mode.

Supervisor Address Space Accesses: Access to the supervisor address space is allowed
when the processor is in Kernel mode or Supervisor mode, as described above.

User Address Space Accesses: Access to the user address space is allowed in Kernel,
Supervisor, and User modes.

4-18

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.12 Cause Register (13)

31 30 29 2827 19 18 16 15 14 1312 11 109 76 21 0
B|B|CE 0 EXC2 |[IP| 0 [S| IP | 0 |ExcCode| O
D|D [7] || [3:2]
2 o)
P
1 1 2 9 3 1 2 1 2 3 5 2

Figure 4-14. Cause Register

The 32-bit read-only Cause register describes the cause of the most recent exception.
Figure 4-14 shows the fields of this register. Table 4-13 describes the Cause register fields.
All bits in the Cause register are read-only.

Table 4-13. Cause Register Fields

Field | Bits Description Type Initial
Value
BD 31 Set by the processor when any exception other than Reset, NMI, Read-only | Undefined
performance counter, or debug occurs and is taken in a branch delay
slot.
1 - delay slot
0 - normal
BD2 30 Indicates whether the last NMI, performance counter, debug, or SIO | Read-only | Undefined

exception taken occurred in a branch delay slot.

1 - delay slot
0 - normal

CE 29:28 Coprocessor unit number referenced when a Coprocessor Unusable | Read-only | Undefined
exception is taken.

EXC2 18:16 Indicates the exception codes for level 2 exceptions (Performance Read-only [Undefined
Counter, Reset, Debug, SIO and NMI exceptions)
000 (0) : Res (Reset)
001 (1): NMI (Non-maskable Interrupt)
010 (2): PerfC (Performance Counter)
011 (3): Dbg (Debug) and SIO (SIO)
1xx (4-7) . Reserved

1P[7,3:2] 15, Indicates an interrupt is pending. Read-only | Undefined,
11:10 1 - interrupt pending Int[1:0]
0 - no interrupt
SIOP 12 Indicates an SIO signal is pending Read-only SIO

1 - SIO signal is pending
0 - no SIO signal is pending

4-19

TOSHIBA

X
Chapter 4 CPU and COPO Registers mﬁﬁtcem

Field

Bits

Description

Type

Initial
Value

ExcCode

6:2

Exception code filed.

00000
00001
00010
00011
00100

00101
00110
00111

01000
01001
01010
01011
01100
01101
01110
01111

(11):

(12):
(23):
(14):
(25):

. Int (Interrupt)

: Mod (TLB modification exception)

: TLBL (TLB exception (load or instruction fetch))
: TLBS (TLB exception (store))

: AdEL (Address error exception

(load or instruction fetch))

: AdES (Address error exception (store))
: IBE (Bus error exception (instruction fetch))
: DBE (Bus error exception

(data reference: load or store))

: Sys (Syscall exception)
: Bp (Breakpoint exception)
- Rl (Reserved instruction exception)

CpU(Coprocessor Unusable exception)
Ov (Arithmetic overflow exception)

Tr (Trap exception)

Reserved

FPE Floating-Point exception

(16-31): (Reserved)

Read-
only

Undefined

27:19,
14:13,
9:7,
1:0

Reserved. Must be written as zeroes, and returns zeroes when read.

Read-
only

4-20

TOSHIBA

X
Chapter 4 CPU and COPO Registers mﬁﬁtcem

4.2.13 EPC Register (14)

31

EPC

32

Figure 4-15. EPC Register

The Exception Program Counter (EPC) is a read/write register that contains the address
at which processing resumes after an exception has been serviced.

For synchronous exceptions, the EPC register contains either:

the virtual address of the instruction that was the direct cause of the exception,

or

the virtual address of the immediately preceding branch or jump instruction

(when the instruction is in a branch delay slot, and the BD bit in the Cause

register is set).

On the occurrence of an exception, if the EXL bit in the Status register is set to a 1, the
processor does not update the EPC register. Figure 4-15 shows the format of the EPC
register. Table 4-14 describes the EPC register fields.

Table 4-14. EPC Register Field

Field

Bits

Description

Type

Initial Value

EPC

310

Contains the address at which processing can resume after an
exception has been serviced.

Read/Write

Undefined

4-21

TOSHIBA

X
Chapter 4 CPU and COPO Registers mﬁﬁtcem

4.2.14 PRId Register (15)

31

16 15 8 7

0 Imp Rev

16 8 8

Figure 4-16. PRId Register

The 32-bit read-only Processor Revision Identifier (PRId) register contains information
identifying the implementation and revision level of the C790 and COPO. Figure 4-16
shows the format of the PRId register; Table 4-15 describes the PRId register fields.

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision number, and
the high-order byte (bits 15:8) is interpreted as an implementation number. The
implementation number of the C790 processor is 0x38. The content of the high-order
halfword (bits 31:16) of the register are reserved.

The revision number is stored as a value in the form y.x, where y is major revision number
in bits 7:4 and x is a minor revision number in bits 3:0.

The revision number can distinguish some chip revisions, but there is no guarantee that
changes to the chip will necessarily be reflected in the PRId register, or that changes to
the revision number necessarily reflect real chip changes. For this reason, these values are
not listed and software should not rely on the revision number in the PRId register to
characterize the chip.

Table 4-15. PRId Register Fields

Field Bits Description Type Initial
Value
Imp 15:8 Implementation number Read-only 0x38
Rev 7:0 Revision number of each mask Read-only | Revision
number
0 31:16 Reserved. Must be written as zeroes, and returns zeroes when read. | Read-only

4-22

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.15 Config Register (16)

31 30 28 27 19 18 17 16 15 14 13 12 11 98 65 32 0
0| EC 0 D(I|(D(B{O|N(B| IC DC 0 | KO
I|C|C|E B|P
E|E|E E|E
1 3 9 1 1 1 1 1 1 1 3 3 3 3

Figure 4-17. Config Register Format

The Config register specifies various configuration options which can be selected. Figure 4-
17 shows the format of the Config register; Table 4-16 describes the Config register fields.

Some configuration options, as defined by Config bits 30:28, 15 and 11:6, are set by the
hardware during reset and are included in the Config register as read-only status bits for
the software to access. Other configuration options like 18:16 and 13:12 are set by
hardware during reset and can be modified by software. Other configuration options like
bits 2:0 are read/write and controlled by software; on reset these fields are undefined.

Table 4-16. Config Register Fields

. : o Initial
Field Bits Description Type value
EC 30:28 Bus clock ratio. Read-only 0
000: processor clock frequency divided by 2
001 ~ 111; (Reserved)
DIE 18 Double issue enable Read/Write 0
0 - Single issue 1 - Double issue
ICE 17 Setting this bit to 1 enables the instruction cache. Read/Write 0

0 - Instruction cache disable
1 - Instruction cache enable

The CACHE instruction for the instruction cache is enabled
regardless of the value of this bit.

DCE 16 Setting this bit to 1 enables the data cache. Read/Write 0

0 - Data cache disable
1 - Data cache enable

If the cache is disabled, the PREF instruction becomes a NOP.

BE 15 Big Edian Read-only Pin
0 - Little Edian 1 - Big Edian
NBE 13 Setting this bit to 1 enables non-blocking load. Read/Write 0

0 - Disable Non-blocking loads and hit under miss
1 - Enable Non-blocking loads and hit under miss
BPE 12 Setting this bit to 1 enables branch prediction. Read/Write 0

0 - Disable Branch Prediction
1 - Enable Branch Prediction

IC 11:9 Instruction cache Size (Instruction cache size = 212vc bytes). Read-only 011
011 - 32 KB

DC 8:6 Data cache Size (Data cache size = 2'2*°C pytes). Read-only 011
011 — 32 KB

4-23

X
System

TOSHIBA Chapter 4 CPU and COPO Registers mmsc

. . . Initial
Field Bits Description Type value
KO 2:0 kseg0 coherency algorithm. Read/Write | Undefined
000: Reserved
001: Reserved
010: Uncached
011: Cacheable, write-back, write allocate
100: Reserved
101: Reserved
110: Reserved
111: Uncached Accelerated
0 31, Reserved, Must be written as zeroes, and returns zeroes when Read-only 0
27:19, read.
14,
5:3

With single issue enabled (DIE = 0), the C790 always fetches two instructions but only
issues a single instruction.

4-24

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.16 BadPAddr Register (23)

31

BdPAddr 0
28

Figure 4-18. BadPAddr Register Format

The Bad Physical Address register (BadPAddr) is a read-only register that contains the
most recent physical address that caused a bus error. It is updated with a new value

whenever Status.BEM is clear (0). Once this bit is set (on the occurrence of a bus error)
the register holds the value.

Figure 4-18 shows BadPAddr register format; Table 4-17 describes the register fields.

Table 4-17. BadPAddr Register Fields

Field Bits Description Type Initial
Value
BdPAddr 31:4 Physical Address value Read-Only undefined
0 3:0 Reserved. Returns zeros when read. Read-Only 0

4-25

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.17 Debug Registers (24)

There are seven separately addressable debug registers, which are all assigned to CPO,
register 24.

Each of the seven registers is accessed by specifying subaccess code which is bit2 to bitO of
an instruction code.

Breakpoint Control Register (BPC) (subaccess code 0)

31

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15143 2 1 0
| |D|D|D I O bD/D/D/D|I |D|B D|D|I
AIRIW|V|O|U|S|K|E|O|U|S|K|X|T|T|E|O|W|R|A
EIE]E]E EIE|E EIEIEJE]JE]JE|D B|B|B

See Table 13-3 for a detailed description of individual BPC register fields.

4-26

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁtcem

Instruction Address Breakpoint (IAB) (subaccess code 2)

31 21 0
IAB 0

30
Instruction Address Breakpoint Mask Register (IABM) (subaccess code 3)

31 21 O

IABM 0
30

Data Address Breakpoint Register (DAB) (subaccess code 4)

31 0

DAB
32

Data Address Breakpoint Mask Register (DABM) (subaccess code 5)

31 0

DABM
32

Data value Breakpoint Register (DVB) (subaccess code 6)

31 0

DvB
32

Data value Breakpoint Mask Register (DVBM) (subaccess code 7)

31 0

DVBM
32

4-27

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.18 Performance Counter Registers (25)

There are three separately addressable performance counter registers, which are all
assigned to COPO, register 25.

Each of the three registers is accessed by specifying subaccess code which is bitl to bitO of
an instruction code.

All performance counter registers are read/write registers.

Performance Counter Control Register (PCCR)

31 30 2019 15 14 13 12 11 109 54 3 2 1

C 0 UIS|K|E]|DO UIS|K|E|O

T EVENT1 L)X EVENTO 01010]X

E L L

1 0

1 11 5 1 1 1 1 1 5 1 1 1 1 1
Performance Counter Register 0 (PCRO)

31 30 0

@]

\Y

£ VALUE

L

1 31
Performance Counter Register 1 (PCR1)

31 30 0

@]

\Y

£ VALUE

L

1 31

Figure 4-19. Performance Counter Registers

4-28

TOSHIBA

Chapter 4 CPU and COPOQ Registers m

X
System
RISC

Table 4-18 lists the field definitions for the Performance Counter Control register.

Table 4-18. Performance Counter Control Register Fields

Field

Bits

Description

Type

Initial Value

CTE

31

Enables event counting (CTR1, CTRO) and exception
generation:

0 - Disable 1 - Enable

Read/Write

0

EVENT1

19:15

Set the event to be monitored by PCR1
00000 (0) Low-order branch issued
00001 (1) Processor cycle
00010 (2) Dual instruction issue
00011 (3) Branch miss predicted
00100 (4) TLB miss
00101 (5) DTLB miss
00110 (6) Data Cache miss
00111 (7) WBB single request unavailable
01000 (8) WBB burst request unavailable
01001 (9) WBB burst request almost full
01010 (10) WBB burst request full
01011 (11) CPU data bus busy
01100 (12) Instruction completed
01101 (13) Non-BDS instruction completed
01110 (14) COP1 instruction completed
01111 (15) Store completed
10000 (16) No event

(17-31) Reserved

Read/Write

Undefined

EVENTO

9:5

Set the event to be monitored by PCRO
00000 (0) Reserved
00001 (1) Processor cycle
00010 (2) Single instruction issue
00011 (3) Branch issue
00100 (4) BTAC miss
00101 (5) ITLB miss
00110 (6) Instruction Cache miss
00111 (7) DTLB accessed
01000 (8) Non-blocking load
01001 (9) WBB single request
01010 (10) WBB burst request
01011 (11) CPU address bus busy
01100 (12) Instruction completed
01101 (13) Non-BDS instruction completed
01110 (14) Reserved
01111 (15) Load completed
10000 (16) No event

(17-31) Reserved.

Read/Write

Undefined

U1, Uo

14, 4

Enables event counting (PCR1/PCRO) in the User mode.
0 - Disable 1 - Enable

Read/Write

Undefined

S1, S0

13,3

Enables event counting (PCR1/PCRO) in the Supervisor
mode.

0 - Disable 1 - Enable

Read/Write

Undefined

K1, KO

12,2

Enables event counting (PCR1/PCRO) in the Kernel mode.

0 - Disable 1 - Enable

Read/Write

Undefined

EXL1, EXLO

11,1

Enables event counting (PCR1/PCRO0) when EXL bit is set
in the Status register.

0 - Disable 1 - Enable

Read/Write

Undefined

30:20,
10,

Reserved. Must be written as zero, and returns zero when
read.

Read-only

4-29

X
System

TOSHIBA Chapter 4 CPU and COPO Registers mmsc

Table 4-19 lists the field definitions for the Performance Counter register 0 (PCRO).

Table 4-19. Performance Counter Register 0 Fields

Field Bits Description Type |Initial Value
OVFL 31 Overflow flag Read/Write Undefined
VALUE 30:0 The actual counter Read/Write Undefined

Table 4-20 lists the field definitions for the Performance Counter register1 (PCR1).

Table 4-20. Performance Counter Register 1 Fields

Field Bits Description Type |Initial Value
OVFL 31 Overflow flag Read/Write Undefined
VALUE 30:0 The actual counter Read/Write Undefined

4-30

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.19 TagLo (28) and TagHi (29) Registers

TaglLo
31 12 11 7 6 5 4 3 2 0
PTaglLo Special use D|V|[R|L]| Su
20 5 1 1 1 1 3
TagHi
31 0
Special use

32

Figure 4-20. TagLo and TagHi Registers

The TagLo and TagHi registers are 32-bit read/write registers used by the CACHE
instruction. For writing to the data cache tags, the TagLo register contains the fields as
shown above and the TagHi register is not used. For writing to the data cache data portion
the TagLo register contains the data value. For writing to the instruction cache tags the
TagL o register contains the fields as defined above except that bits three and six are also
reserved bits. For writing to the instruction cache data portion, the TaglLo register
contains the data (instruction) and the TagHi register contains the steering bits and bits
for the BHT as defined in Chapter 7. When reading from the caches, the values in the
TaglLo and TagHi register are the same as described above for writing. These registers are
also used for manipulating the BTAC. See the description of the CACHE instruction in
Appendix C for details. Figure 4-20 shows the format of these registers for some of the
cache operations.

4-31

X
TOSHIBA Chapter 4 CPU and COPO Regjisters mﬁﬁfém

Table 4-21 lists the field definitions of the TagLo register.

Table 4-21. TaglLo Register Fields

Field Bits Description Type Initial
Value
PTagLo 31:12 PTaglLo[31:12] specifies 20-bit physical address tag cache. Read/Write | Undefined
[31:12]
D 6 Dirty: Read/Write | Undefined
0 - Clean
1 - Dirty
\Y 5 Valid: Read/Write | Undefined
0 - Invalid
1 - Valid
R 4 LRF Replacement: This bit participates in the calculation Read/Write | Undefined

determining which cache way will be used for the next
replacement. See Section 7.3.1 for details.

L 3 Lock: This bit is only used for the data cache. For instruction Read/Write | Undefined
cache operations this bit is treated as a reserved bit.
0 - For this line, this side is not locked.
1 - For this line, this side is locked.

Special [11:7,2:0| Used by the CACHE instruction to manipulate the branch target Read/Write | Undefined
use, Su address cache. Refer to Chapter 7 for details.

Table 4-22. TagHi Register Fields

Field Bits Description Type Initial
Value

Special use| 31:0 The TagHi register is used by the CACHE instruction to manipulate| Read/Write | Undefined
some of the bits of the instruction cache. Refer to Chapter 7 for
details.

4-32

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4.2.20 ErrorEPC (30)

31 0

ErrorEPC
32

Figure 4-21. ErrorEPC Register

The ErrorEPC register is similar to the EPC register, except that ErrorEPC is used on
nonmaskable interrupt (NMI), debug, SI10, and performance counter exceptions.

The read/write ErrorEPC register contains the virtual address at which instruction
processing can resume after servicing an error. This address can be:

e the virtual address of the instruction that caused the exception

e the virtual address of the immediately preceding branch or jump instruction
(when the instruction is in a branch delay slot, and the BD2 bit in the Cause
register is set).

Table 4-23 lists the field definition of the ErrorEPC register.

Table 4-23. ErrorEPC Register Field

Field Bits Description Type Initial Value
ErrorEPC 31:.0 Contains the virtual address at which instruction Read/Write Undefined
processing can resume after servicing an error.

4-33

X
TOSHIBA Chapter 4 CPU and COPO Registers mﬁﬁfém

4-34

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5. Exception Processing and Reset

This chapter describes the exception processing, including level 1 and level 2 exceptions.

5-1

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.1 The Exception Handling Process

Exceptions can be recognized while the program is any of its three operating modes: User,
Supervisor, or Kernel.

Exceptions are categorized into 2 groups which are level 1 exceptions and level 2
exceptions as shown in Table 5-1.

Table 5-1. Exception Levels

Level 1 Exceptions Level 2 Exceptions

Interrupt Reset

TLB Modified NMI

TLB Refill Performance Counter
TLB Invalid Debug

Address Error SIO

Syscall

Break

Trap

Reserved Instruction
Coprocessor Unusable
Integer Overflow

Bus Error

Floating Point Exception

Compatibility Note: Level 2 exceptions are a generalization of “error level” exception
processing defined in earlier MIPS implementation.

5.1.1 Level 1 Exceptions
Exception Processing

When the processor takes a level 1 exception, the processor switches to Kernel mode.
Rather than set the Status.KSU bits to effect the switch, the Status.EXL bit is set to 1.
Whenever Status.EXL is 1, the operating mode is Kernel mode, regardless of the setting of
Status.KSU.

Then the processor saves the virtual address of the instruction canceled by the exception.
This address is saved in the EPC register. If the canceled instruction is in the delay slot of
a branch instruction, the Cause.BD bit is set to 1 and EPC is set to the address of the
branch instruction (rather than the delay slot). For non-delay-slot instructions, Cause.BD
is set to 0. If Status.EXL bit was 1 before the exception is taken, EPC and Cause.BD
aren’'t set. The exception service routine examines Cause.BD to determine the true
address of the instruction that raised the exception.

In addition to setting EPC, Cause.BD, and Status.EXL, the 5 bit field Cause.ExcCode is
also set. This field specifies the cause of the exception; The Cause.CE fields may also get
set when an Coprocessor unusable exception is raised.

After setting those bits, the processor jumps to the exception vector address.

5-2

X
System

TOSHIBA Chapter 5 Exception Processing and Reset mmsc

The basic exception handling operation performed can be described using the Figure 5-1
Level 1 Exception Processing Flowchart.

(see next page)
Disabled exceptions in level 1 exception handler

Once a level 1 exception service routine is entered, interrupts and bus error are
unconditionally disabled.

C790 Programming Note: The only level 1 exception that is unconditionally
disabled within level 1 exceptions handler is external interrupts and bus errors.
All other level 1 exceptions still occur and are recognized (if enabled). a software
system that makes use of such exceptions must use extreme care. In particular,
it must make sure that it has saved EPC and Cause.BD somewhere (e.g. in a
software managed stack) before the exception occurs.

5-3

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

Set Cause.ExcCode

Cause.CE ~ coprocessor number when CpU exception
Set BadVAddr when AJES, AdEL or any TLB exception
Set Context and EntryHi when any TLB exception

Set BadPAddr when Bus Error

Status.EXL

YES

Instr.in
Br.Dly.Slot ?

lNo

Y

EPC ~ PC-4 EPC - PC
Cause.BD ~ 1 Cause.BD - 0

A

y
Status.EXL ~ 1

= TLB Refill

= Interrupt

= Others

Y \ \
Offset — 0x0 Offset — 0x180 Offset — 0x200 Offset — 0x180
=0 (normal) =1 (bootstrap)

) J
PC ~ 0x8000 0000+Offset

\ J
PC — OxBFCO 0200+Offset

[
1‘

Figure 5-1. Level 1 Exception processing flowchart

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.1.2 Level 2 Exceptions

Exception Processing

When the processor takes a level 2 exception, the processor switches to kernel mode, by
setting Status.ERL to 1.

The address of the instruction where the Level 2 exception was recognized is stored in the
ErrorEPC register. If the canceled instruction is in the delay slot of a branch instruction,
the Cause.BD2 bit is set to 1 and ErrorEPC is set to the address of the branch instruction
(rather than the delay slot). For non-delay-slot instructions, Cause.BDZ is set to 0. In
addition, the cause of the exception is stored in Cause.EXC2.

After setting those bits, the processor jumps to the exception vector address.

The basic Level 2 exception handling operation performed can be described using the
Figure 5-2 Level 2 Exception processing Flowchart.

(see next page)
Disabled Exceptions in level 2 exceptions

When executing a Level 2 exception service routine, following exceptions are disabled.

e NMI, Interrupt, and Bus error
e Debug, SIO and Performance counter

C790 Implementation Note: Any external exception that is not level-sensitive (e.qg.
NMI) must be held until it is recognized; i.e. at least until the Level 2 handler is
exited.

C790 Programming Note: It is the programmer’s responsibility to ensure that all
other internal exceptions (e.g. OVERFLOW) never occur within a Level 2 handler.
If they do occur, the corresponding Level 1 exception handler will be entered.
Since both Status.EXL and Status.ERL will be set when servicing this (nested)
exception, the ERET used to exit the service routine will operate incorrectly.

C790 Programming Note: When Status.ERL = 1, the user address, Kuseg, region
becomes a 231-byte unmapped, uncached address space (that is, mapped directly
to physical address 0x0000 0000-0x7FFF FFFF).

5-5

TOSHIBA

X
Chapter 5 Exception Processing and Reset mﬁﬁtcem

YES

A J

'

Set Cause.EXC2

Instr.in
Br.Dly.Slot ?

ErrorEPC ~ PC-4
Cause.BD2 ~ 1

ErrorEPC ~ PC
Cause.BD2- 0

= Reset or NMI

A J

Status.BEV ~ 1

Status.BEM ~ 0
Config.DIE/ICE/DCE ~ 0
Config.NBE/BPE ~ 0
Random ~ 47

Wired « 0

PCCR.CTE ~ 0
BPC.IAE/DRC/DWE - 0

A J

A

'

Status.ERL « 1

= Debug or SIO

A

'

= Performance Counter

Offset — 0x100

=0 (normal)

A J

Offset — 0x80

=1 (bootstrap)

A J

PC ~ OxBFCO 0000

PC ~ 0x8000 0000+Offset

PC ~ 0xBFCO 0200+Offset

Figure 5-2.

[y]
¢

Level 2 Exception processing flowchart

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.2 Exception Vector Locations

Exception vector addresses for level 1 exceptions are shown in Table 5-2.
The vector address for TLB refill depends on the Status.EXL bit. The vector addresses for

level 1 exceptions also depend on the Status.BEV bit.

Table 5-2. Exception Vectors for Level 1 exceptions

Exceptions

Vector Address

BEV =0

BEV=1

TLB Refill (EXL = 0)
TLB Refill (EXL = 1)

0x8000 0000
0x8000 0180

0xBFCO 0200
0xBFCO 0380

Interrupt

0x8000 0200

0xBFCO0 0400

Others

0x8000 0180

OxBFCO0 0380

Exception vector addresses for level 2 exceptions are shown in Table 5-3.
The vector addresses for level 2 exceptions also depend on the Status.DEV bit.

Table 5-3. Exception Vectors for Level 2 exceptions

. Vector Address
Exceptions DEV = 0 DEV = 1
Reset, NMI OxBFCO 0000 | OxBFCO 0000
Performance Counter 0x8000 0080 | OxBFCO0 0280
Debug, SIO 0x8000 0100 | OxBFCO0 0300

5-7

TOSHIBA

X
Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.3 Cause Register Setting

The Cause.ExcCode bits are set when a level 1 exception is taken.
The Cause.ExcCode setting is shown in Table 5-4.

Table 5-4. Cause.ExcCode Field

ExcCode Exception
0 Int (Interrupt)
1 Mod (TLB modification exception)
2 TLBL (TLB exception; load or inst fetch)
3 TLBS (TLB exception; store)
4 AdEL (Address error exception; load or inst fetch)
5 AdES (Address error exception; store)
6 IBE (Bus error exception; instruction fetch)
7 DBE (Bus error exception; load or store)
8 Sys (Syscall exception)
9 Bp (Breakpoint exception)
10 RI (Reserved instruction exception)
11 CpU (Coprocessor Unusable exeption)
12 Ov (Integer Overflow exception)
13 Tr (Trap exception)
14 Reserved
15 FPE (Floating Point Exception)
16-31 Reserved

The Cause.EXC2 bits are set when a level 2 exception is taken.
The Cause.EXCZ2 setting is shown in Table 5-5.

Table 5-5. Cause.EXC2 Field

EXC2 Exception
0 Res (Reset exception)
1 NMI (Non-Maskable Interrupt)
2 PerfC (Performance Counter exception)
3 Dbg (Debug exception), SIO (SIO exception)
4 SS (Single Step)
5-7 Reserved

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.4 Masking an exception

The following exceptions can be masked by setting bits in Status register.
NMI, Performance counter, Debug, Bus error, Interrupt and SI1O

The Table 5-6 shows whether the bits mask those exceptions. Exceptions which marked
with “X” can be masked by setting (BEM, EXL or ERL) or clearing (IE or IM) the
corresponding bit in the Status register.

Table 5-6. Masking exceptions

Mask bit (in Status register)
IE IM BEM | EXL | ERL

Exception

Reset

NMI

Performance Counter
Debug

SIO

Address error

TLB Refill/Invalid/Modify
Bus error X X X
Syscall

Break

Reserved instrcution
Coprocessor Unusable
Interrupt X X X X
Integer overflow
Trap

XX | X[X

5-9

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5 Detaild Description
5.5.1 Exception Priority

Exception priority rules determine which exception is taken first, if multiple exceptions
occur on the same instruction. The Table 5-7. Shows the priority order of the exceptions.

Table 5-7. Exception Priority Order

Reset (highest priority)

NMI

Performance Counter

Instruction Breakpoint (debug)

Address error - Instruction fetch

TLB refill - Instruction fetch

TLB invalid - Instruction fetch

Bus Error - Instruction fetch

Single Step

SYSCALL, BREAK, Reserved Instruction,*
Floating Point Exception or Coprocessor Unusable*
Interrupt

Data address/value breakpoint (debug)
SIO

Integer overflow, Trap

Address error - data access

TLB refill - data access

TLB invalid - data access

TLB modified - data access

Bus error - data access (lowest priority)

* The exception priority between Reserved Instruction exception(RI) and Coprocessor
Unusable exception(CpU)

The exception priorities of the two exceptions are the same. However, when
Status.CU[1] = 0, an attempt to execute any FPU (COP1) instruction causes a CpU
exception. When Status.CU[1] = 1, the attempt is reported as an FPE(E):unimplemented
FPU exception in the Cop1l sub-instructions.

On the other hand, an attempt to execute any COPO class Reserved Instruction causes
an RI exception regardless Status.CUJ0].

5-10

TOSHIBA

X
Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.2 Reset Exception

Cause

The RESET exception occurs when the Reset* signal is asserted and then deasserted. This

exception

is not maskable.

Exception Level: 2

Vector Address: 0OxBFC00000

Processing

The RESET exception vector is located within uncached and unmapped address space.
Hence the cache and TLB need not be initialized in order to process the exception.

The contents of all registers in the CPU are undefined when this exception is recognized,
except for the following register fields:

Servicing

In the Status register,
Status.ERL and Status.BEV are set to 1.

Status.BEM is set to O.
All other bits except for O-fixed bits are undefined.
In the Cause register,
Cause.EXCZ2is set to O (to indicate that a Reset occurred)
All other bits except for O-fixed bits are undefined.
In the Config register,
DIE, ICE, DCE, NBE, and BPE bits are set to O.
All other bits except for fixed-value, read-only bits are undefined.
The Random register is initialized to the value of its upper bound (47).
The Wired register is initialized to 0.
The Counter Enable flag in the Performance Counter Control register
(PCCR.CTE) is set to 0.
The breakpoint address enable flags in the Breakpoint Control register,
BPC.IAE, BPC.DRE, and BPC.DWE, are all set to O.
Valid, Dirty, LRF, and Lock bits of the data cache and the Valid and LRF bits of
the instruction cache are initialized to O on reset.

The RESET exception is serviced by:

initializing all processor registers, coprocessor registers, caches, and the memory
system

performing diagnostic tests

bootstrapping the operating system

5-11

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.3 Non-Maskable Interrupt (NMI) Exception
Cause

The Non-Maskable Interrupt (NMI) exception occurs in response to the falling edge of the
NMF signal. The NMI exception is maskable by setting the Status.ERL bit. It is
recognized regardless of the settings of the Status.EXL, and Status.IE bits.

Exception Level: 2
Vector Address: 0OxBFC00000
Processing

NMI and RESET exceptions share the same exception vector. This vector is located within
uncached and unmapped address space; therefore, the cache and TLB need not be
initialized in order to process the exception.

When the NMI exception is recognized, all register contents are preserved with the
following exceptions:

e ErrorEPC register, which contains the restart PC, and Cause.BDZ2 which records
whether the NMI was recognized in a branch delay slot.

» Status.ERL and Status.BEV flags are both set to 1.

e Cause.EXCZis set to 1 (NMI).

Servicing
Note that the NMI service routine entry address does not depend on the Status.BEV flag.

In fact, the Status.BEV bit is unconditionally set to 1 before the NMI handler is entered.
It is up to the NMI service routine to restore the setting of the Status.BEV bit prior to exit.

5-12

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.4 Performance Counter Exception
Cause

A lower-case performance counter exception occurs when a Performance counter overflows
and conditions are met as described in Section 9.3.2. This exception is maskable by setting
Status.ERL bit.

Exception Level: 2
Vector Address: 0x8000 0080 (DEV = 0), 0xBFCO0 0280 (DEV = 1)
Processing

The value of Cause.EXCZ is set to 2 (PerfC). The ErrorEPC register contains the address
of the instruction where the Performance counter exception was detected unless it is in a
branch delay slot, in which case the ErrorEPC register contains the address of the
preceding branch instruction and the Cause.BDZ is set.

Servicing

When this exception is recognized, control is transferred to the applicable service routine.

5-13

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.5 Debug Exception
Cause

A DEBUG exception occurs whenever hardware breakpoint conditions as described in
Chapter 13 are detected. This exception is maskable by setting Status.ERL bit.

Exception Level: 2
Vector Address: 0x8000 0100 (DEV = 0), 0OxBFCO0 0300 (DEV = 1)
Processing

The value of Cause.EXCZ2 is set to 3 (Dbg). The ErrorEPC register contains the address of
the instruction where the debug exception was detected unless it is in a branch delay slot,
in which case the ErrorEPC register contains the address of the preceding branch
instruction and Cause.BD?2 is set. Note that the Load data value breakpoint exception is
imprecise. That is, the instruction where the breakpoint is detected is not the load
instruction that triggers the breakpoint; see Chapter 13 for more details.

Servicing

When this exception is recognized, control is transferred to the applicable service routine.

5-14

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.6 Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to execute one of the
following:

* load or store a doubleword that is not aligned on a doubleword boundary
* load, fetch, or store a word that is not aligned on a word boundary

* load or store a halfword that is not aligned on a halfword boundary

* reference the kernel address space from User or Supervisor mode

« reference the supervisor address space from User mode

This exception is not maskable.

Exception Level: 1

Vector Address: 0x8000 0180 (BEV = 0), 0OxBFCO 0380 (BEV = 1)
Processing

The value of Cause.ExcCode is set to 4 (AdEL) or 5 (AdES), depending on whether the
exception was caused due to an instruction reference (AdEL), load operation (AdEL), or
store operation (AdES).

When this exception is recognized, the virtual address that was not properly aligned or
that referenced protected address space is stored in the BadVAddr register. This update
occurs even if the exception occurs within a level 1 or level 2 exception handler. The
contents of the VPN field of the Context and EntryHi registers are undefined, as are the
contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the exception, unless
this instruction is in a branch delay slot. If it is in a branch delay slot, the EPC register
contains the address of the preceding branch instruction and Cause.BD is set to indicate
that the branch delay slot instruction actually caused the exception.

5-15

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.7 TLB Refill Exception

Cause

The TLB refill exception occurs when there is no TLB entry to match a reference to a
mapped address space. This exception is not maskable.

Exception Level: 1

Vector Address: EXL = 0: 0x8000 0000 (BEV = 0), 0xBFCO 0200 (BEV = 1)
EXL = 1: 0x8000 0180 (BEV = 0), 0xBFCO 0380 (BEV = 1)

Processing

The value of Cause.ExcCode is set to either a value of 2 (TLBL) or 3 (TLBS). This code
indicates whether the exception was caused due to an instruction reference, load operation,
or store operation.

When this exception is recognized, the BadVAddr, Context and EntryHi registers are
updated to hold the virtual address that failed address translation. The EntryHi register
also contains the ASID for which the translation fault occurred. These actions take place
even if the exception is recognized within a level 1 or level 2 exception handler. The
Random register normally contains a valid location in which to place the replacement TLB
entry. The contents of the EntryLo register are undefined. The EPC register contains the
address of the instruction that caused the exception, unless this instruction is in a branch
delay slot, in which case the EPC register contains the address of the preceding branch
instruction and Cause.BD is set.

The EPC register and BD bit in the Cause register point to the address of the instruction
causing the exception.

Servicing

To service this exception, the contents of the Context register are used as a virtual address
to fetch memory locations containing the physical page frame and access control bits for a
pair of TLB entries. The two entries are placed into the EntryLoO/EntryLol register; the
EntryHi and EntryLo registers are then written into the TLB.

It is possible that the virtual address used to obtain the physical address and access
control information is on a page that is not resident in the TLB. This condition is
processed by allowing a TLB refill exception in the TLB refill handler. This second
exception goes to the common exception vector because the EXL bit of the Status register
is set.

5-16

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.8 TLB Invalid Exception

Cause

The TLB invalid exception occurs when a virtual address reference matches a TLB entry
that is marked invalid (TLB valid bit cleared). This exception is not maskable.

Exception Level: 1
Vector Address: 0x8000 0180 (BEV = 0), OxBFCO0 0380 (BEV = 1)
Processing

The value of Cause.ExcCode is set to either 2 (TLBL) or 3 (TLBS). This code indicates
whether the exception was caused due to an instruction reference, load operation, or store
operation.

When this exception is recognized, the BadVAddr, Context, and EntryHi registers are
loaded with the virtual address that failed address translation. The EntryHi register also
contains the ASID for which the translation fault occurred. These actions occur even if the
exception is recognized within a level 1 or level 2 exception handler. The Random register
normally contains a valid location in which to put the replacement TLB entry. The
contents of the EntryLo register is undefined.

The EPC register contains the address of the instruction that caused the exception unless
this instruction is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

A TLB entry is typically marked invalid when one of the following is true:

* avirtual address does not exist

e the virtual address exists, but is not in main memory (a page fault)

e atrap is desired on any reference to the page (for example, to maintain a
reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with TLBP
(TLB Probe), and replaced by an entry with that entry’s Valid bit set.

5-17

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.9 TLB Modified Exception

Cause

The TLB modified exception occurs when a store operation generates a virtual address
that matches a TLB entry that is marked valid but is not dirty and therefore is not
writable. This exception is not maskable.

Exception Level: 1
Vector Address: 0x8000 0180 (BEV = 0), 0xBFCO 0380 (BEV = 1)
Processing

The value of Cause.ExcCode is set to 1 (Mod) and the BadVVAddr, Context, and EntryHi
registers contain the virtual address that failed address translation. The EntryHi register
also contains the ASID for which the translation fault occurred. These actions occur even
if the exception is recognized within a level 1 or level 2 exception handler. The contents of
the EntryLo register is undefined.

The EPC register contains the address of the instruction that caused the exception unless
that instruction is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The kernel uses the failed virtual address or virtual page number to identify the
corresponding access control information. The page identified may or may not permit
write accesses; if writes are not permitted, a write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the kernel in
its own data structures. The TLBP instruction places the index of the TLB entry that
must be altered into the Index register. The EntrylLo register is loaded with a word
containing the physical page frame and access control bits (with the D bit set), and the
EntryHi and EntryLo registers are written into the TLB.

5-18

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.10 Bus Error Exception

Cause

A Bus Error exception is raised when BUSERR* signal is asserted during bus transactions.
This exception is masked when Status.BEM, Status.EXL or Status.ERL are set to 1.

Exception Level: 1
Vector Address: 0x8000 0180 (BEV = 0), 0xBFCO0 0380 (BEV = 1)
Processing

The value of Cause.ExcCode is set to 6 (IBE) or 7 (DBE), indicating whether the exception
was caused due to an instruction reference (/IBE), load operation (DBE), or store operation
(DBE). The BadPAddr is set to the physical address which caused a bus error when
Status.BEM bit is 0.

The EPC register and BD bit in the Cause register point to the address of the instruction
currently being executed by the processor.

Note that there is no necessary relationship between a bus error and the instruction being
executed currently. For example, a bus error may be caused by instruction prefetch, or by
a data cache line operation that is unrelated to any instruction. Furthermore, it could be
caused by a load or store that was issued several instructions prior to the instruction that
was executing when the bus error was recognized.

If a bus error is caused by a load or store instruction, the instruction is retired. If the
instruction is a store, the nature of how memory is updated depends on the memory
subsystem’s design. If the instruction is a load, the value loaded into the destination
register is indeterminate. If a data value breakpoint is pending for the memory address
accessed, breakpoint recognition is implementation dependent.

Servicing

In the C790 the bus error exception is imprecise and as such difficult to recover from and
continue processing. If a bus error occurs during instruction or data cache refills, the
cache line loaded has undefined values in it. Since it is not possible in general to
determine the offending address (from the EPC) the entire data and instruction cache
contents should be invalidated by using Index Invalidate suboperation of the CACHE
instruction. (See the CACHE instruction’s definition for details on how to do this.)

5-19

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.11 System Call Exception

Cause

A SYSCALL exception occurs as a result of executing the SYSCALL instruction. This
exception is not maskable.

Exception Level: 1
Vector Address: 0x8000 0180 (BEV = 0), OxBFCO0 0380 (BEV = 1)
Processing

The value of Cause.ExcCode is set to 8 (Sys). The EPC register contains the address of the
SYSCALL instruction unless it is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and Cause.BD is set.

Servicing
When this exception is recognized, control is transferred to the applicable system routine.

To resume execution, the EPC register must be altered so that the SYSCALL instruction
does not re-execute; this is accomplished by adding a value of 4 to the EPC register (EPC
register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated algorithm, beyond
the scope of this description, may be required.

5-20

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.12 BREAK Instruction Exception
Cause

A BREAK exception occurs as a result of executing the BREAK instruction. This exception
is not maskable.

Exception Level: 1
Vector Address: 0x8000 0180 (BEV = 0), OxBFCO0 0380 (BEV = 1)
Processing

The value of Cause.ExcCode is set to 9 (Bp). The EPC register contains the address of the
BREAK instruction unless it is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and Cause.BD is set.

Servicing

When a BREAK exception is recognized, control is transferred to the applicable system
routine. Additional distinctions can be made by analyzing the unused bits of the BREAK
instruction (bits 25:6), and loading the contents of the instruction whose address the EPC
register contains. A value of 4 must be added to the contents of the EPC register (EPC
register + 4) to locate the instruction if it resides in a branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK instruction
does not re-execute; this is accomplished by adding a value of 4 to the EPC register (EPC
register + 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the branch instruction
is required to resume execution.

5-21

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.13 Reserved Instruction Exception

Cause

The Reserved Instruction exception occurs when one of the following conditions occurs:

e an attempt is made to execute an instruction with an undefined major opcode
(bits 31:26)

* an attempt is made to execute a SPECIAL instruction with an undefined minor
opcode (bits 5:0)

e an attempt is made to execute a REGIMM instruction with an undefined minor
opcode (bits 20:16)

e an attempt is made to execute a MMI instruction with an undefined minor
opcode (bits 10:0)

e an attempt is made to execute a COPz instruction with an undefined minor
opcode (bits 25:21)

Note: In the C790, 64-bit operations are always valid in User, Supervisor, and Kernel
mode.

This exception is not maskable.

Exception Level: 1

Vector Address: 0x8000 0180 (BEV = 0), 0OXBFCO0 0380 (BEV = 1)
Processing

The value of Cause.ExcCode is set to 10 (RI). The EPC register contains the address of the
reserved instruction unless it is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction.

5-22

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.14 Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute a
coprocessor instruction for either:

« acorresponding coprocessor unit that has not been marked usable via the
Status.Cu[] bits or

e COPQO instructions, when the unit has been marked not usable and the process
executes in either User or Supervisor mode.

NOTE: COPO instructions always execute in Kernel mode, regardless of the
setting of Status.CU/[0]. Also note that the operation of the COPO instructions EI
and DI is not controlled by Status.CU[0]. Instead, the Status.EDI bit specifies
whether the El and DI instructions execute in User and Supervisor modes. In
case execution is suppressed, EI and DI behave as no-operations in User and
Supervisor modes; they do not signal an exception.

The exception is not maskable.
Exception Level: 1
Vector Address: 0x8000 0180 (BEV = 0), 0OxBFCO0 0380 (BEV = 1)

Processing

The value of Cause.ExcCode is set to 11 (CpU) and the field Cause.CE (Coprocessor Usage
Error) is set to indicate which of the four coprocessors was referenced. The EPC register
contains the address of the unusable coprocessor instruction unless it is in a branch delay
slot, in which case the EPC register contains the address of the preceding branch
instruction.

Servicing

The coprocessor unit to which an attempted reference was made is identified by the CE
(Coprocessor Usage Error) field, which result in one of the following situations:

« If the process is entitled access to the coprocessor, the coprocessor is marked
usable and the corresponding user state is restored to the coprocessor.

< If the process is entitled access to the coprocessor, but the coprocessor does not
exist or has failed, interpretation of the coprocessor instruction is possible.

« If the BD bit is set in the Cause register, the branch instruction must be
interpreted; then the coprocessor instruction can be emulated and execution
resumed with the EPC register advanced past the coprocessor instruction.

5-23

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.15 Interrupt Exception
Cause

The Interrupt exception occurs when one of the three interrupt signals is asserted. The
significance of the interrupts is dependent upon the specific system implementation.

Each of the three interrupts can be masked by clearing the corresponding bit in the Int-
Mask field of the Status register, and all of the three interrupts can be masked at once by
clearing the IE bit or EIE bit of the Status register.

All three interrupts are also masked at once when the EXL or ERL bit of the Status
register is set to 1.

Interrupt IP[7] is set when the Count register is equal to the Compare register.
Exception Level: 1

Vector Address: 0x8000 0200 (BEV = 0), 0OXBFCO 0400 (BEV = 1)

Processing

The value of Cause.ExcCode is set to 0O (Int). The IP field of the Cause register indicates
current interrupt requests. It is possible that more than one of the bits can be
simultaneously set (or even no bits may be set) if the interrupt is asserted and then
deasserted before this register is read.

Servicing

If the interrupt is hardware-generated, the interrupt condition is cleared by correcting the
condition causing the interrupt pin to be asserted.

Due to the on-chip write buffer, a store to an external device (possibly clearing the
interrupt) may not occur until after other instructions in the pipeline finish. Hence, the
user must ensure that the store will occur before the return from exception instruction
(ERET) is executed. This can be insured by executing a SYNC instruction. Otherwise the
interrupt may be serviced again even though there is no actual interrupt pending.

5-24

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.16 SIO Exception

Cause

The SIO exception occurs when the SIOInt signal is asserted. This exception is maskable
by setting Status.ERL bit.

Exception Level: 2
Vector Address: 0x8000 0100 (DEV = 0), 0OxBFCO0 0300 (DEV = 1)
Processing

The value of Cause.EXCZ2 is set to 3(Dbg). The Cause.SIOP is set to 1. The ErrorEPC
register contains the address of the instruction where the SIO exception was detected
unless if is in a branch delay slot, in which case the ErrorEPC register contains the
address of the preceding branch insruction and Cause.BDZ is set.

Servicing

When this exception is recognized, control is transferred to the applicable service routine.

5-25

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.17 Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI or
DSUB instruction results in a 2's complement overflow. This exception is not maskable.

Exception Level: 1
Vector Address: 0x8000 0180 (BEV = 0), OxBFCO0 0380 (BEV = 1)
Processing

The value of Cause.ExcCode is set to 12 (Ov). The EPC register contains the address of the
instruction that caused the exception unless the instruction is in a branch delay slot, in
which case the EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set.

5-26

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.18 Trap Exception
Cause

The TRAP exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEIU,
TLTI, TLTIU, TEQI, or TNEI instruction results in a TRUE condition. This exception is
not maskable.

Exception Level: 1
Vector Address: 0x8000 0180 (BEV = 0), 0xBFCO 0380 (BEV = 1)
Processing

The value of Cause.ExcCode is set to 13 (Tr). The EPC register contains the address of the
instruction causing the exception unless the instruction is in a branch delay slot, in which
case the EPC register contains the address of the preceding branch instruction and
Cause.BD is set.

5-27

X
TOSHIBA Chapter 5 Exception Processing and Reset mﬁﬁtcem

5.5.19 Floating-Point Exception
Cause

The Floating-Point exception is used by the floating-point coprocessor. This exception is
not maskable.

Exception Level: 1
Vector Address: 0x8000 0180 (BEV = 0), OxBFCO0 0380 (BEV = 1)
Processing

The common exception vector is used for this exception, and the FPE code in Cause
register is set.

The contents of the Floating-Point Control/Status register indicate the cause of this
exception.

This exception is cleared by clearing the appropriate bit in the Floating-Point
Control/Status register.

For an unimplemented instruction exception, the kernel should emulate the instruction;
for other exceptions, the kernel should pass the exception to the user program that caused
the exception.

5-28

X
TOSHIBA Chapter 6 Memory Management mﬁﬁtc&m

6. Memory Management

The C790 processor provides a memory management unit (MMU) which uses an on-chip
translation look-aside buffer (TLB) to translate virtual addresses into physical addresses.

The C790 supports the MIPS compatible 32-bit address and 64-bit data mode. Only 32-bit
virtual and physical addresses have been implemented. There is no requirement for
address sign extension and address error exception checking will not be done on the
“upper” 32-bits (which are ignored). The only condition that will generate the address
error exception will be address alignment errors and segment protection errors. In Kernel
mode, there will be address error exception free program counter wrap-around from kseg3
to kuseg.

Since there is only one addressing mode, all the four MIPS ISAs (I, 11, I1l, 1V) and the
C790 specific ISA are available without any restrictions in all of the three processor modes
(with the appropriate MIPS ISA coprocessor usable restrictions). As such the reserved
instruction (RI) exception will occur only when the processor really tries to execute an
undefined opcode.

This chapter describes the processor virtual and physical address spaces, the virtual-to-
physical address translation, the operation of the TLB in making these translations, and
those System Control Coprocessor (COPO) registers that provide the software interface to
the TLB.

6-1

X
TOSHIBA Chapter 6 Memory Management mﬁﬁtc&m

6.1 Translation Look-aside Buffer (TLB)

Mapped virtual addresses are translated into physical addresses using an on-chip TLB.
The TLB is a fully associative memory that holds 48 entries, which provide mapping to 48
odd / even page pairs (96 pages). When address mapping is indicated, each TLB entry is
checked simultaneously for a match with the virtual address that is extended with an
ASID stored in the low 8 bits of the EntryHi register.

The address mapped to a page ranges in size from 4 KB to 16 MB, in multiples of four;
that is, 4K, 16K, 64K, 256K, 1M, 4M, 16M.

6.1.1 Translation Status

In C790 processor, as the one implemented in R4000, each TLB entry holds two sets of
mapping information for two odd/even page pair and therefore the translation result is
categorized into three states, hit, miss and invalid.

Upon address translation, if there is no virtual address match in all 48 entries, the
translation result is categorized as TLB miss.

In this case, an exception is taken and software refills the TLB from the page table
resident in memory. Software can write over a selected TLB entry or use a hardware
mechanism to write into a random entry.

If there is a match on translation, the following takes place in the TLB hardware.

1. The translation information for odd page and even page is read out of the matching
entry. Also the page size is extracted at the same time.

2. The TLB selects either of translation information in accordance with the page size
information extracted above and the virtual address.
This becomes the translation result in the TLB.

The translation result includes a valid flag to indicate the translation information is valid
or not. If the flag is marked as ‘valid’, the translation is handled as TLB hit. The physical
page number is extracted from the TLB and concatenated with the offset to form the
physical address (see Figure 6-1).

If the flag is marked as ‘invalid’, the translation result is recognized as TLB invalid. In
this case, an exception is taken to request the software to update the entry that got a
match upon translation, by probing the TLB using TLBP operation.

6.1.2 Multiple Matches

Multiple match is the condition that there are two or more entries that match upon
address translation. This is strictly prohibited and software is expected never to allow this
to occur.

The C790 processor does NOT provide any meanings to detect this in hardware, such as
TLB shutdown. The result of this condition is undefined and the further execution may
provide incorrect result.

6-2

X
System

TOSHIBA Chapter 6 Memory Management m RISC

6.2 Address Spaces

This section describes the virtual and physical address spaces and the manner in which
virtual addresses are converted or “translated” into physical addresses in the TLB.

6.2.1 Virtual Address Space

The C790 only implements 32 bits of virtual address space. There is no requirement for
address sign extension and no checking will be done on the upper 32 bits of the address.

Figure 6-1 shows the translation of a virtual address into a physical address.
Virtual address
1. Virtual address (VA) represented by
the virtual page number (VPN) is ASID VPN Offset

concatenated with the ASID and -
compared with the tags in the TLB. l

2. If there is a match, the page frame G | AsSID VPN
number (PFN) representing the
upper bits of the physical address
(PA) is output from the TLB. I TLB

Entry
TLB \
\ v

4. The Offset, which does not pass I

through the TLB, is then concatenated PFN Offset
to the PFN.

Physical address

Figure 6-1. Overview of a Virtual-to-Physical Address Translation

As shown in Figure 6-2, the virtual address is extended with an 8-bit address space
identifier (ASID), which reduces the frequency of TLB flushing when switching contexts.
This 8-bit ASID is in the COPO EntryHi register as described later in this chapter.

6-3

X
TOSHIBA Chapter 6 Memory Management mﬁﬁtc&m

6.2.2 Physical Address Space

Using a 32-bit address, the processor physical address space encompasses 4 GB. The
following section describes the translation of a virtual address to a physical address.

6.2.3 Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual
address from the processor with the virtual addresses in the TLB; there is a match when
the virtual page number (VPN) of the address is the same as the VPN field of the entry,
and either:

« the Global (G) bit of the TLB entry is set, or
« the ASID field of the virtual address (taken from the 8-bit ASID field of the
EntryHi register) is the same as the ASID field of the TLB entry.

If there is no match, a TLB Miss exception is taken by the processor and software can
refill the TLB from a page table of virtual / physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is output from the
TLB and concatenated with the Offset, which represents an address within the page
frame space. The Offset does not pass through the TLB. At the same time, the valid bit
output from TLB is checked to qualify the translation. If this bit is not set, a TLB Invalid
exception is taken by the processor and software can update the TLB.

Virtual-to-physical translation is described in greater detail throughout the remainder of
this chapter. Figure 6-9, shown at the end of this chapter, is a detailed flow diagram of
this process.

6-4

X
System

TOSHIBA Chapter 6 Memory Management m RISC

6.2.4 32-bit Address Translation Mode

The C790 supports only 32-bit address translation mode. 64-bit addressing mode is not
supported.

Figure 6-2 shows the virtual-to-physical address translation of a 32-bit address.
e The top portion of Figure 6-2 shows a virtual address with a 12-bit, or 4-KB,

page size, labeled Offset. The remaining 20 bits of the address represent the
VPN, and index the 1M-entry page table.

e The bottom portion of Figure 6-2 shows a virtual address with a 24-bit, or 16-
MB, page size, labeled Offset. The remaining 8 bits of the address represent the
VPN, and index the 256-entry page table.

Virtual Address with 1M (220) 4-Kbyte pages

39 3231 2928 1211 0
ASID VPN Offset I

20 12

8 g,.}
~— ~—
Virtual-to-physical Offset passed
unchanged to

Bits 31, 30 and 29 of the virtual transfation in TLB

address select user, supervisor, TLB fnhg:]'gs
or kernel address spaces. 32-bit Phvsical Address
31 0
PFN Offset
Virtual-to-physical Offset passed
translation in TLB unchanged to
physical
/\ AL Y AL memory \
39 3231 2928 24 23 0
ASID VPN Offset
8 8 24

Virtual Address with 256 (28) 16-Mbyte pages

Figure 6-2. 32-bit Mode Virtual Address Translation

6-5

TOSHIBA

X
Chapter 6 Memory Management mﬁﬁtcem

6.2.5 Operating Modes

The processor has the three standard MIPS operating modes:

* User mode
e Supervisor mode
+ Kernel mode

Selection between the three modes can be made by the operating system (when in Kernel
mode) by writing into Status register's KSU field. The processor is forced into Kernel
mode when the processor is handling a Level 1 exception (the EXL bit is set - also called
the Exception Level mode in R-series processors) or a Level 2 exception (the ERL bit is set
- also called the Error Level mode in R-series processors).

In the following table, dashes represent ‘don’t cares’.

Table 6-1 Processor Modes

Description KSU ERL EXL
32-bit User mode 10 0 0
32-bit Supervisor mode 01 0 0
32-bit Kernel mode 00 0 0
32-bit Kernel mode (Level 1 exception) 0 1
32-bit Kernel mode (Level 2 exception) 1

Figure 6-3 shows a state transition among these three modes.

Exception

User Mode

Y—FERET & KSU =10

Supervisor
Mode

Figure 6-3 State Transition among Operating Modes

Exception

ERET & KSU =01

TOSHIBA

X
Chapter 6 Memory Management mﬁﬁtcem

Table 6-2 summarizes address space for each operating mode.

Table 6-2. Address Space

Virtual 32-bit User 32-bit 32-bit Kernel
Address Mode Supervisor Mode
Mode
OXFFFF FFFF Address kseg3 (0.5 GB)
to Error Mapped
O0xE000 0000
OxDFFF FFFF sseg (0.5 GB) ksseg (0.5 GB)
to Address Mapped Mapped
0xC000 0000
OxBFFF FFFF Error ksegl (0.5 GB)
to Unmapped*
0xA000 0000 Address Uncached
OX9FFF FFFF Error kseg0 (0.5 GB)
to Unmapped*
0x8000 0000 Cached**
Ox7FFF FFFF useg (2 GB) susegd (2 GB) kuseg (2 GB)
to Mapped Mapped Mapped
0x0000 0000 (becomes
unmapped if
ERL is 1)

*Note: Virtual addresses of Kernel segments, kseg0 and ksegl, are not mapped through the
TLB and always translated into physical addresses from 0x0000 0000 to Ox1FFF FFFF.

** Note:

The ksegO0 cache algorithm is controlled by the KO field in the Config register.

6-7

X
TOSHIBA Chapter 6 Memory Management mﬁﬁtc&m

6.2.6 User Mode Operations

In User mode, a single, uniform virtual address space, labeled User segment, is available;
its size is:

2 GB (2% bytes) (useg)
Figure 6-4 shows User mode virtual address space.

Virtual Address 32-bit

0x FFFF FFFH
Address
Error
0x 8000 0000
2GB
Mapped [YS®Y
0x 0000 0000

Figure 6-4. User Mode Virtual Address Space

The User segment starts at address 0x0000 0000 and the current active user process
resides in useg. The TLB identically maps all references to useg from all modes, and
controls cache accessibility.

The processor operates in User mode when the Status register contains the following bit-
values:
* KSU bits =102

e and EXL=0
e and ERL=0

6-8

TOSHIBA

X
Chapter 6 Memory Management mﬁﬁtcem

Table 6-3 lists the characteristics of the User mode segment, useg .

Table 6-3. User Mode Segments

Address Bit Status Register Segment Virtual Address Segment
Values Bit Values Name Range Size
KSU | EXL | ERL
A[31]=0 10, 0 0 useg 0x0000 0000 through 2 Ghyte
OX7FFF FFFF (2% bytes)

User Mode, User Space(useg)

In User mode(KSU = 102 in the Status register), when the most-significant bit of the 32-
bit virtual address is set to 0, the useg virtual address space is selected; it covers the 23!
bytes (2 GB) of the current user address space. All valid User mode virtual addresses have
their most-significant bit cleared to 0; any attempt to reference an address with the most-
significant bit set while in User mode causes an Address Error exception.

The system maps all references to useg through the TLB. Bit settings within the TLB
entry for the page determine the cacheability of a reference. The virtual address is

extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs through Ox7FFF FFFF.

6-9

X
TOSHIBA Chapter 6 Memory Management mﬁﬁtc&m

6.2.7 Supervisor Mode Operations

Supervisor mode is designed for layered operating systems in which a true kernel runs in
C790 Kernel mode, and the rest of the operating system runs in Supervisor mode.

The processor operates in Supervisor mode when the Status register contains the
following bit-values:

+ KSU=01

e and EXL=0

e and ERL=0

Virtual Address 32-bit

0x FFFF FFFF [Agdress
0x E000 0000 | __error

0.5 GB

0x C000 0000 | Mapped Ssed
Address

0x A00O 0000 error
Address

0x 8000 0000 error

2GB

suseg
Mapped

0x 0000 0000

Figure 6-5. Supervisor Mode Virtual Address Space

Table 6-4. Supervisor Mode Segments

Address Bit Status Register Segment Virtual Address Segment
Values Bit Values Name Range Size
KSU | EXL | ERL
A[31]=0 01, 0 0 suseg 0x0000 0000 through 2 Ghyte
Ox7FFF FFFF (2*! bytes)
A[31:29] = 110, 01, 0 0 sseg 0xC000 0000 through 0.5 Ghbyte
OXDFFF FFFF (2% bytes)

Supervisor Mode, User Space (suseg)

In Supervisor mode (KSU = 012 in the Status register), when the most-significant bit of
the 32-bit virtual address is set to 0, the suseg virtual address space is selected; it covers
the 231 pytes (2 Gbytes) of the current user address space. The virtual address is extended
with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs through Ox7FFF FFFF.
Supervisor Mode, Supervisor Space (sseg)

In Supervisor mode (KSU = 01: in the Status register), when the three most-significant
bits of the 32-bit virtual address are 110, the sseg virtual address space is selected; it
covers 22-pytes (512 Mbytes) of the current supervisor address space. The virtual address
is extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xC0O00 0000 and runs through OxDFFF
FFFF.

6-10

X
TOSHIBA Chapter 6 Memory Management mﬁﬁtc&m

6.2.8 Kernel Mode Operations

The processor operates in Kernel mode when the Status register contains one of the
following values:

¢« KSU=00:2
e oOorEXL=1
e orERL=1

The processor enters Kernel mode whenever an exception is detected and it remains in
Kernel mode until an Exception Return (ERET) instruction is executed. The ERET
instruction restores the processor to the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the high-order
bits of the virtual address, as shown in Figure 6-6.

Table 6-5 lists the characteristics of the kernel mode segments.

Virtual Address Physical Address

32-bit 32-bit
Ox FFFF FFFF
kseg3 —* Translated by TLB

Ox FFFF FFFF
0.5GB
Mapped
0Ox E000 0000

0.5GB

Mapped ksseg — Translated by TLB

0x C000 0000

0.5GB
Unmapped
Uncached

ksegl ——

0Ox AOOO 0000

0.5GB
Unmapped

kseg0 ——>
Cached

0x 8000 0000

2GB
Mapped
(becomes
unmapped if
ERL=1)

kuseg —>
Translated by TLB

Ox 1FFF FFFF
0.5GB

Kernel Boot
‘ > and I/O

0x 0000 0000 0x 0000 0000

Figure 6-6. Kernel Mode Address Space

6-11

X
TOSHIBA Chapter 6 Memory Management mﬁﬁtc&m

Table 6-5. Kernel Mode Segments

Address Bit Status Register Segment Virtual Address Segment
Values Bit Values Name Range Size
KSU | EXL | ERL
A[31]=0 KSU = 00, kuseg 0x0000 0000 through 2 Gbyte
OX7FFF FFFF (2% bytes)
A[31:29] = 100, or kseg0 0x8000 0000 through 0.5 Gbyte
OX9FFF FFFF (2*° bytes)
A[31:29] = 101, EXL=1 ksegl 0xA000 0000 through 0.5 Gbyte
OXBFFF FFFF (2% bytes)
A[31:29] = 110, or ksseg 0xC000 0000 through 0.5 Gbyte
OXDFFF FFFF (2*° bytes)
A[31:29] = 111, ERL=1 kseg3 OXE000 0000 through 0.5 Ghyte
OXFFFF FFFF (2% bytes)

Kernel Mode, User Space (kuseg)

In Kernel mode (KSU = 002 or EXL =1 or ERL = 1 in the Status register), when the most-
significant bit of the virtual address, A[31], is a 0, the 32-bit kuseg virtual address space is
selected; it covers the full 23! bytes (2 GB) of the current user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual
address.

When ERL = 1 in the Status register, the user address, kuseg, region becomes a 23!-byte
unmapped, uncached address space (that is, mapped directly to physical addresses 0x0000
0000 through Ox7FFF FFFF).

Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode (KSU = 002 or EXL =1 or ERL = 1 in the Status register), when the most-
significant three bits of the virtual address are 1002, 32-bit ksegO virtual address space is
selected; it is the 22-byte (512 MB) kernel physical space.

References to ksegO are not mapped through the TLB; the physical address selected is
defined by subtracting 0x8000 0000 from the virtual address. The KO field of the Config
register, described in this chapter, controls cacheability and coherency.

Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode (KSU = 002 or EXL =1 or ERL = 1 in the Status register), when the most-
significant three bits of the 32-bit virtual address are 1012, 32-bit ksegl virtual address
space is selected; it is the 22°-byte (512 MB) kernel physical space.

References to ksegl are not mapped through the TLB; the physical address selected is
defined by subtracting 0OXA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and physical memory (or memory-
mapped 1/O device registers) is accessed directly.

Kernel Mode, Supervisor Space (ksseg)

In Kernel mode (KSU = 00z in the Status register), when the most-significant three bits of
the 32-bit virtual address are 1102, the ksseg virtual address space is selected; it is the
current 22°-pyte (512 MB) supervisor virtual space. The virtual address is extended with
the contents of the 8-bit ASID field to form a unique virtual address.

6-12

X
System

TOSHIBA Chapter 6 Memory Management m RISC

Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode (KSU = 00z in the Status register), when the most-significant three bits of
the 32-bit virtual address are 1112, the kseg3 virtual address space is selected; it is the
current 22°-pyte (512 MB) kernel virtual space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

6-13

X
TOSHIBA Chapter 6 Memory Management mﬁﬁtc&m

6.3 System Control Coprocessor

The System Control Coprocessor (COPOQ) is implemented as an integral part of the CPU,
and supports memory management, address translation, exception handling, and other

privileged operations. The COPO registers shown in Figure 6-7 plus a 48-entry TLB make
up the MMU.

Each COPO register has a unique number that identifies it; this number is referred to as
the register number. For instance, the PageMask register is register number 5.

EntryLoO Index Context BadVAddr
EntryHi 2* 0* 4 8*
10~ EntryLol
3+ Random I
1*
a7 PageMask Status
5* 12*
TLB Wired I
6*

(“Safe” entries)
(See Random register,
contents of TLB Wired)
127 0

o

*Register number

Figure 6-7. COPO Registers and the TLB

6-14

TOSHIBA

X
Chapter 6 Memory Management mﬁﬁtcem

6.3.1 Format of a TLB Entry

Figure 6-8 shows the TLB entry formats for the 32-bit address translation modes. Each
field of an entry has a corresponding field in the EntryHi, Entryl o0, Entrylol, or
PageMask registers. For example, the Mask field of the TLB entry is also held in the
PageMask register.

128-bit TLB
entry in 32-
bit mode of
C790

processor

32-bit Mode
/5.27 121 120 109 108 96
MASK 0 I
12 13
95 777675 7271 64
VPN2 G 0 ASID I
19 1 4 8
63 58 57 38 37 3534 3332
PEN C |D|V OI
20 3 111
31 26 25 65 321 O
PEN C |D|V OI
\ 20 3 111

Figure 6-8. Format of a TLB Entry

The format of the EntryHi, Entrylo, Entrylol, and PageMask registers are nearly the
same as the TLB entry. The one exception is the Global field (G bit), which is used in the
TLB, but is reserved in the EntryHi register. The following register tables describe the
TLB entry fields shown in Figure 6-8.

6-15

X
TOSHIBA Chapter 6 Memory Management mﬁﬁtc&m

PageMask Register
31 25 24 13 12 0

0 MASK 0

12 13

MASK Page comparison mask.
0 Reserved. Must be written as zeroes, and returns zeroes when read.

EntryHI Register
31 13 12 8 7 0

VPN2 0 ASID

19 5 8

VPN2 Virtual page number divided by two (maps to two pages).

ASID Address space ID field. An 8-bit field that lets multiple processes share the TLB; each
process has a distinct mapping of otherwise identical virtual page numbers.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

EntryLoO Register

31 2625 6 5 3 2 1 0
0 PEN C D|V]|G
20 3 1 1 1

EntryLol Register

31 26 25 6 5 3 2 1 0
0 PEN C D|V|G
20 3 1 1 1
PFN Page frame number; the upper bits of the physical address.
C Specifies the TLB page coherency attribute; see Table 6-7.
D Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is
actually a write-protect bit that software can use to prevent alteration of data.
\% Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLB invalid
exception occurs.
G Global. If this bit is set in both LOO and LO1, then the processor ignores the ASID
during TLB lookup.
0 Reserved. Must be written as zeroes, and returns zeroes when read.

The TLB page coherency attribute (C) bits specify whether references to the page should
be either of cached, uncached, or uncache-accelerated. Table 6-6 shows the coherency
attributes selected by the C bits.

6-16

X
TOSHIBA Chapter 6 Memory Management mﬁﬁtc&m

Table 6-6 TLB Page Coherency (C) Bit Values

C[5:3] Value Page Coherency Attribute
Reserved

Reserved

Uncached

Cacheable, write-back, write-allocate
Reserved

Reserved

Reserved

Uncached, Accelerated

N|OoO[OlR|W[IN[FL]O

Write-back with allocate fetches the line with the missed data both on load misses and on
store misses. Therefore, storing data to such pages is always performed to the data cache
and will not be sent to the write buffer.

Uncached accelerated data provides a special kind of acceleration for handling uncached
data. On a load of an uncached accelerated data item (which can range in size from a byte
to a quadword) the C790 will always fetch an aligned 128-byte quantity from memory.
These eight quadwords will be placed in a special 128-byte buffer called the uncache
accelerated buffer, or UCAB in the CPU. Any subsequent loads which “hit” the UCAB will
get the data from the UCAB. This process reduces bus trafficc The UCAB will be
invalidated under the following conditions:

« Any load operation which doesn't hit the buffer, or

* any store operation, or

e aSYNC (or SYNC.L) operation, or

e any exception.
For uncached accelerated stores, the C790 write-back buffer (128-bit x 8) also has some
special features. On the first store of an uncached accelerated write the write-back buffer
will mark the fact that this is an uncached accelerated write to a particular address.
Subsequent uncached accelerated stores which hit within the same 128-bit address
boundary will be accumulated (gathered) within the same write buffer entry. This process

of data gathering reduces bus traffic. The gathering process will be terminated under the
following conditions:

e Any store which can't be gathered (different attribute or different address), or
e any load operation, or

e aSYNC (or SYNC.L) operation, or

e any exception.

6-17

X
System

TOSHIBA Chapter 6 Memory Management m RISC

6.4 Virtual-to-Physical Address Translation Process

In the supported 32-bit mode, the highest 8 to 20 bits of the virtual address (depending
upon the page size) are compared to the contents of the TLB virtual page number. The 8-
bit ASID is only compared if the global bit, G, is not set.

If a TLB entry matches, the physical address and access control bits (C, D, and V) are
retrieved from the matching TLB entry. While the V bit of the entry must be set for a
valid translation to take place, it is not involved in the determination of a matching TLB

entry.

Figure 6-9 illustrates the TLB address translation process.

6-18

TOSHIBA

X
Chapter 6 Memory Management mﬁﬁtcem

Virtual Address (Input)

For valid
address space, see
the section describing
Operating Modes

in this chapter.

Exception

‘ Yes v

ASID No
atch?

\

Yes Yes

A
< > Not
Match Match

No

Yes Dlrty

A Y

Yes TLB TLB
Non- Invalid Refill

cacheable Exception

Access
Cache
Physical Address (Output)

Figure 6-9. TLB Address Translation

6-19

X
System

TOSHIBA Chapter 6 Memory Management m RISC

If there is no TLB entry that matches the virtual address, a TLB miss exception occurs. If
the access control bits (D and V) indicate that the access is not valid, a TLB modified or

TLB invalid exception occurs.

If the C bits equal 0102 (Uncached) or 111, (Uncached Accelerated), the physical address
that is generated directly accesses main memory, bypassing the cache.

6.5 TLB Instructions

Table 6-7 lists the instructions that the CPU provides for working with the TLB. See
Appendix C for a detailed description on these instructions.

Table 6-7. TLB Instructions

OpCode Description of Instruction

TLBP Translation Look-aside Buffer Probe

TLBR Translation Look-aside Buffer Read

TLBWI Translation Look-aside Buffer Write Index
TLBWR Translation Look-aside Buffer Write Random

6-20

X
TOSHIBA Chapter 7 Caches mfﬁzfém

7. Caches

The C790 core contains both an instruction cache and a separate data cache. The
processor also contains a small size of read only cache memory for uncached accelerated
area.

This chapter describes the cache structures, operation of the caches, and cache control.

7-1

X
TOSHIBA Chapter 7 Caches mfﬁzfém

7.1 Cache Features

The two caches are configured as shown in Table 7-1:

Table 7-1. Cache Configuration

Cache Size Organization Line Size Refill Size
Instruction Cache 32 KB 2-Way 64 bytes 64 bytes
Data Cache 32 KB 2-Way 64 bytes 64 bytes

The following are the main features of the caches:

e Separate Instruction Cache and Data Cache

« Virtually indexed and physically tagged caches

e 64 Byte line size

« 64 Byte Refill size

e 2-way set-associative cache for higher performance

e Write-back policy for the Data Cache

e Missed quadword first sequential order burst refills for the Data Cache
e Data Cache line locking

* Non-Blocking Loads

e Data cache supports multiple Hits under a single miss
* No Snoop capability

No cache snoop capability has been provided. The user may choose to use CACHE
instructions to keep coherency between caches and main memory.

7-2

X
TOSHIBA Chapter 7 Caches mfﬁzfém

7.2 Organization of the Caches

Organization of the caches is illustrated in Figure 7-1 and Figure 7-2. Both the
Instruction Cache and the Data Cacher are 2-way set-associative. Each cache line consists
of a tag and data. Each cache has a data line size of 64 bytes.

7.2.1 Data Cache

The Data Cache is connected to the CPU via a 128-bit bus. Therefore, the Data Cache can
supply to the CPU or the coprocessors up to a quadword of data per access.

The following diagram shows Data Cache structure. Tags are discussed in detail in a later
section.

Phys.Tag0 Data0 Phys.Tagl Datal
L|R|V|D| PEN DATA L|R|V|D| PEN DATA

Virtual Index) (20 bits 64 bytes 20 bits 64 bytes

256
entries

- _/ - /
Y Y
Way0 Wayl
L Lock Bit For description, see Section 7.3.7, Data Cache Lock Function
R LRF Bit For description, see Section 7.3.1, Line Replacement Algorithm
\% Valid Bit For description, see Section 7.2.3, Tag Structure
D Dirty Bit For description, see Section 7.2.3, Tag Structure

Figure 7-1. Organization of Data Cache

X
TOSHIBA Chapter 7 Caches mfﬁzfém

7.2.2 Instruction Cache

The Instruction Cache is connected to the CPU pipeline via a 64-bit bus. This enables the
CPU to fetch two instructions per cycle from the Instruction Cache.

The following diagram shows Instruction Cache structure. Tags are discussed in detail in
a later section.

Phys.Tag0 Data0O Phys.Tagl Datal
RV | PEN DATA RV | PEN DATA

Virtual Index) (20 bits 64 bytes 20 bits 64 bytes

256
entries

- NG /
h'd h'd
WayO0 Way1l
R LRF Bit
\Y Valid Bit

Figure 7-2. Organization of Instruction Cache

7-4

X
TOSHIBA Chapter 7 Caches mfﬁzfém

7.2.3 Tag Structure

The general structure of a tag consists of a set of state bits and a physical page frame
number or PFN field. The Data Cache and the Instruction Cache have different numbers
of state bits; for more information, refer to the discussions in the following sections.

The size of the tag and the number of virtual address bits indexing the caches are
dependent upon the size of the cache, address space, and set associativity. The C790
supports 32-bit virtual and physical addresses as shown in the figure below:

Virtual Address (VA)

31 14 13 12 11 0

VPN OFFSET

Physical Address (PA)

31 14 13 12 11 0

PFN OFFSET

Since the cache line size is fixed at 64 bytes, that is, four quadwords per entry, the Tag
Cache associated with each way will have one tag for every four quadwords. Table 7-2
shows cache sizes, address bits and tag size.

Table 7-2. Cache Size and Access Bits

Cache Size Way Size of Cache Virtual Tag Cache Tag Virtual
Each Way Address Size of Each Address
Index Bits Way Index
Data 32K 2 WAY | 256 x 64 Bytes 13:4 256 x 20 Bits 13:6
Instruction 32K 2 WAY [256 x 64 Bytes 13:3 256 x 20 Bits 13:6

While the caches are indexed by the virtual address, the tag comparison is physical. This
is possible because the caches and the TLB are accessed in parallel. So, when the tags
have been accessed, the page frame number is ready to be compared against the
translated virtual address for a cache hit or miss.

C790 Programming Note:

Overlapping of the cache index bit range and PFN bit range causes the “cache aliasing
problem”. C790 does not have any hardware mechanisms to detect the cache aliasing. It is
programmer’s responsibility to avoid the cache aliasing. When a physical page is mapped
on the different virtual pages, VPN[13:12] have to be same in both virtual address. The
conservative way to avoid this is that VPN[13:12] == PFN[13:12] whenever a page is
mapped.

7-5

X
TOSHIBA Chapter 7 Caches mfﬁzfém

7.2.3.1 Data Cache Tag Structure

In addition to the physical page frame number (PFN), each Data Cache Tag entry also
contains additional Cache State bits as shown below. All lines in both ways of the Data
Cache have these four state bits. Cache line state bits are also illustrated in Figure 7-1.

Data Cache Tag Fields

| pirty 0 | valid v) | LRE®) | Lock @) | PEN |

Two state bits, DIRTY and VALID, together identify which of three states the Data Cache
is in: Valid Clean, Valid Dirty, or Invalid. Table 7-3 shows the state of the Data Cache
line as a function of DIRTY and VALID bits.

Table 7-3. Data Cache Line States

Dirty Bit (D) | Valid Bit (V) | Cache Line State | Even if Cache Instruction

X 0 Invalid trytosetV=0,D=1

- state, Dirty bit is forced to
0 1 Va“(.j Clgan zero in C790
1 1 Valid Dirty implementation.

The LRF bit is the Least-Recently-Filled line replacement bit.

The LRF bits serve as a replacement algorithm between the two ways of the Data Cache.
A refill access to a cache line in a way will flip the LRF bit to point to the other way as the
least recently filled. For details of the LRF line update operation refer to Section 7.3.1.

As Figure 7-1 illustrates, Data Cache lines in each way have a LOCK bit. The LOCK bit,
as explained in Section 7.3.7, Data Cache Lock Function, locks lines in one of the ways to
keep data from being replaced.

7.2.3.2 Instruction Cache Tag Structure

In addition to the physical page frame number (PFN), each Instruction Cache Tag entry
also contains two additional Cache State bits as shown below. All lines in both ways of the
Instruction Cache have these two state bits.

Instruction Cache Tag Fields

| valid (v) | LRF(R) | PEN

The Instruction Cache VALID state bit defines whether each line is in the Valid or Invalid
states.

The LRF bit is the Least-Recently-Filled line replacement bit. LRF bits serve as a
replacement algorithm between the two ways of the Instruction Cache. A refill access to a
cache line in a way will flip the LRF bit to point to the other way as the least recently
filled. For details of LRF line update operation refer to Section 7.3.1.

7-6

X
TOSHIBA Chapter 7 Caches mfﬁzfém

7.2.4 State of Cache Tags After Reset

For all Data Cache tags the following fields are initialized to O upon reset:

* Valid
e Dirty
* LRF
* Lock
For all Instruction Cache tags the following fields are initialized to O upon reset:
* Valid
* LRF

All other fields in the Instruction Cache and the Data Cache contents are undefined upon
reset.

7-7

X
TOSHIBA Chapter 7 Caches mfﬁzfém

7.3 Cache Operations

This section describes cache operation in regard to read/write policies, coherency, write-
back policy, and the lock function.

7.3.1 Line Replacement Algorithm

The line replacement policy for both the Instruction Cache and the Data Cache is based on
the Least Recently Filled (LRF) algorithm. In this policy, the LRF bit of a way is modified
(inverted) only when a cache line refill occurs to the corresponding way. Load/store
accesses to the Data Cache do not modify the LRF bit. The bit indicating which way is the
least recently filled way is the XOR of the two LRF bits of the two ways of the cache.

Table 7-4. LRF Line Replacement Algorithm

Current Current XOR Refill New New
WayO Way1l Way WayO Way1l
LRF LRF LRF LRF

0 0 0 0 1 0

1 0 1 1 1 1

1 1 0 0 0 1

0 1 1 1 0 0

The column under XOR indicates the way which could be refilled (line replaced) on the
next refill at that line location. Note that the table shown above is valid only when none
of the ways of the cache line is locked. If a way of the cache line is locked, then regardless
of the state of the LRF bits, the least recently filled way will always be the unlocked way.

The behavior is also slightly different for Instruction and Data Caches when one of the
way is invalid. For the Data Cache the algorithm is followed exactly as given above
irrespective of the ways being valid or invalid. For the Instruction Cache the algorithm
given above is followed as long as both the ways are valid. Once a way becomes invalid,
then that way gets priority of being filled over the valid way irrespective of the LRF bits.

7.3.2 Non-blocking Loads and Hit Under Miss

The Data Cache supports non-blocking load and hit under miss to improve performance.
When a Data Cache miss occurs or an uncached load instruction is issued, Non-blocking
load allows the pipeline to continue instruction execution until one of the following occurs:

1. A subsequent non-load/store/pref instruction has data dependency with the load
that is pending (to be retired).

2. A pipelineO stalls.

7-8

X
TOSHIBA Chapter 7 Caches mfﬁzfém

Hit under miss is a feature that allows access (load or store) to the Data Cache while a
previous load miss (cached, uncached or uncached accelerated), a previous store miss
(cached) or a previous prefetch miss (cached) is still pending. In this case, access to the
cache proceeds and the pipe does not stall.

Uncached loads also do not stall the pipeline while they are pending (to be retired). The
pipeline continues instruction execution until one of the following occurs:

1. A subsequent load/store/pref instruction has data dependency with the load that
is pending (to be retired).

2. A Data Cache miss occurs or a miss occurs on the Uncached Accelerated Buffer.
3. An Uncached load instruction is issued.

To summarize, Non-blocking load and Hit under miss allow the pipelene to continue
instruction execution until one of following occurs when a Data Cache miss occurs or an
uncached load instruction is issued:

1. A subsequent instruction has data dependency with the load that is pending (to
be retired).

2. A Data Cache miss occurs or a miss occurs on the Uncached Accelerated Buffer.
3. An uncached load instruction is issued.
4. A pipeline0 stalls.

Loads to the GPRs (IU) and FPRs (FPU) all follow the non-blocking protocol (when it is
enabled). Loads to COP1 is always blocking.

7.3.3 Cache Miss and Hit Operations

In case of a Data Cache hit, the cache provides data to the CPU in 128-bit (single
quadword) quantities. In case of an Instruction Cache hit, the cache provides data
(*instruction”) in 64-bit quantities. CPU reads or writes to the Data Cache in quantities
less than 128 bits are specified by the least significant four bits of the address, bits 3:0.

Cache misses are processed by the cache controller in 64-byte quantities - one cache line.
Since the caches are connected to the system bus via a 128-bit bus, cache refill takes a
burst of 4 bus cycles (8 CPU cycles) that is, four quadwords are transferred in 4 bus cycles
(actual transfer time can be more due to bus arbitration etc). These reads are performed in
sequential order for both the Instruction Cache and the Data Cache. The quadword for
which the address missed is always fetched first.

Table 7-5 indicates the sequential order. PA[5:4] are two least-significant address bits that
are put out on the CPU Bus. Figure 7-3 illustrates the case where the second quadword,
shaded area, missed and shows the order in which data are read from main memory.

7-9

X
TOSHIBA Chapter 7 Caches mfﬁzfém

Table 7-5. Quadword Retrieved Address PA[5:4]

Bus Starting Block Address PA[5:4]
Cycle 00 01 10 11
1 00 01 10 11
2 01 10 11 00
3 10 11 00 01
4 11 00 01 10

128 bits 128 bits 128 bits 128 bits

11 10 01 00
Read order Third Second First Fourth

Figure 7-3. Read Missed Processed in Sequential Order

In case of a write miss to the Data Cache (for an allocate-on-write address), the cache
controller will read in sequential order a cache line from main memory. Whether the cache
line, being replaced, is first written out to memory or not - due to the DIRTY bit being set -
is discussed in the next section.

The Instruction Cache processes cache misses in burst of 4 quadwords, just like the Data
Cache. Furthermore, in case of an Instruction Cache miss, the pipeline starts in the same
cycle the final quadword is stored into the Instruction Cache.

7.3.4 Data Cache Writeback Policy

Data cache lines are written back to the memory in the following cases:

1. The processor executes Index Write Back Invalidate CACHE instruction
suboperation as defined in Appendix C and the line data are dirty. Or Hit
Writeback Invalidate or Hit Writeback without Invalidate CACHE
suboperations hit on Data Cache and the line data are dirty.

2. A read or write miss occurs and the line data are dirty. In this case the line has
to be written to memory before it can be replaced by the miss data.

7-10

X
TOSHIBA Chapter 7 Caches mfﬁzfém

7.3.5 Data Cache State Transitions

As discussed previously, lines in the Data Cache can be in one of several states: Invalid,
Valid Clean or Valid Dirty.

Invalid means the Data Cache entry does not contain valid data. Upon a miss, the cache
can load data into this cache line with no further actions.

The Valid Clean state indicates that there are valid data in the Data Cache line and they
are the same as memory. All writeback segments have their data in the Valid Clean state
until they are written to by the processor.

The C790 supports the write-back protocol, hence the need for a Valid Dirty state. A Data
Cache line transitions to the Valid Dirty state when the cache line is written to without
reflecting the operation on the bus - the writeback protocol. In this case, the data in the
cache does not match the data in memory.

Figure 7-4 shows the transition diagram of the Data Cache performing according to the
writeback policy. For details on the CACHE operation, refer to Appendix C.

CACHE Index Invalidate

CACHE Index WriteBack Invalidate
CACHE Hit WriteBack Invalidate (if hit)
CACHE Hit Invalidate (if hit)

CACHE Index Store Tag (if V = 0)
Reset

> |nvalid

AN

Read Miss
PREF Miss
CACHE Index Store Tag (if V=1, D = 0)
CPU CACHE Hit W/B without Invalidate (if hit)
Write
Write Miss

CACHE Index Store Tag (if V=1,D =1)
Write

Read

Figure 7-4. Data Cache Transition Diagram, Writeback Protocol

7-11

X
TOSHIBA Chapter 7 Caches mfﬁzfém

7.3.6 Instruction Cache State Transitions
Cache lines in the Instruction Cache can be in either of two states: Invalid or Valid.

Invalid means the Instruction Cache entry does not contain valid instruction data. Upon a
miss, the cache can load instructions into this cache line with no further actions.

The Valid state indicates that there are valid instructions in the cache line and so there is
no need for miss processing.

The transition diagram for the Instruction Cache is simple; refer to Figure 7-5. For
details on the CACHE instructions refer to Appendix C.

CPU
Read
ol . CACHE Hit AN
CACHE Index Store Tag (if V=0) |yalidate CACHE Index Store Tag (if V = 1)
CACHE Index Invalidate (if hit) CPU Read Miss
Reset CACHE Fill

Figure 7-5. Instruction Cache Transition Diagram

7.3.7 Data Cache Lock Function

In a 2-way set-associative Data Cache, such as the one present in the C790, there is no
explicit way of forcing data to be retained in the cache. The LRF-based mechanism
dynamically determines which cache line should be replaced. A Data Cache lock function
has been defined to aid in retaining critical pieces of data in the Data Cache under strict
program control.

Each entry on each way of the Data Cache has a Lock (L) bit. The Lock bit aids in locking
the line by writing directly into it. After locking the line, the LRF bit is no longer
meaningful. Thus, if one of the ways for a particular line is locked, the other way is the
only way available for caching. Thus, once a line is locked with a particular physical
address tag, any other virtual address which maps onto the same cache line will have only
a direct mapped location rather than a 2-way location.

To lock the Data Cache, the following two CACHE instruction suboperations can be used:
INDEX STORE TAG (DCACHE)
INDEX STORE DATA (DCACHE)

For details of the above CACHE instruction suboperation refer to Section 7.6. To lock a
Data Cache line, the following code sequence can be used:

7-12

X
TOSHIBA Chapter 7 Caches mfﬁzfém

i t 0, 0x00010068 // PTagLo = 0x00010, D=V=L=1, R=0

nt cO t0, $28 /1t0 -> TaglLo

sync. |

cache 18, 0(r0) /| TagLo -> Tag(wayO)

sync. |

| a s0, 0x00010000

sSw t1,0(s0) /lstore contents of tl1 into

[/l ocked cache I|ine

In this example, the tag has been modified using the CACHE instruction and the data has
been updated using a Store instruction.

The following restrictions apply to line locking:

e The result of re-locking a locked line is undefined
e The results of locking both ways of a cache line are undefined

To unlock Data Cache lines, the following code sequence can be used:

i t 0, 0x00010060 /1 D=V=1, L=R=0

nm cO t0, $28 /1t0 -> TaglLo

sync. |

cache 18, 0(r0) /| TagLo -> Tag(wayO)
sync. |

7.3.7.1 Operations During Lock

When the lock bit is set for cache line (index), only the other way is available for handling
cache misses. The misses are blocking. A write access to a locked line in the Data Cache
takes place only to the cache without affecting the state of memory. Writes to locked cache
lines will not set the DIRTY (D) bit.

7.3.8 Relationship Between Cached and Uncached Operations

Uncached and Uncached Accelerated load and store operations are always executed in
order on the CPU bus. Cached load operations can precede earlier store data present in
buffers on the CPU bus. All store data present in buffers prevents a SYNC (or SYNC.L)
instruction from completing until the store data has been sent either to the Data Cache or
the CPU bus.

Stores with the uncached and uncached accelerated attributes bypass the Data Cache
completely.

7-13

TOSHIBA

X
Chapter 7 Caches mﬁﬁtcem

7.4 Uncached Accelerated Buffer

7.4.1

The C790 has a small size of read only cache memory for uncached accelerated area to
reduce bus traffic. This read only cache, the Uncached Accelerated Buffer (UCAB), can
introduce data to itself only by refill process due to a load miss on the UCAB. Once load
instructions hit on the UCAB, data are provided directly from the UCAB. The UCAB is
invalidated under the following conditions:

¢ Any load operation which doesn't hit the UCAB, or
* Any store operation, or

e A SYNC (or SYNC.L) operation, or

* Any exception

Snoop is not supported for the UCAB.

UCAB Configuration

The UCAB is configured as shown in Table 7-6.

Table 7-6. UCAB Configuration

Size

Organization

Line Size

Refill Size

Uncached Accelerated Buffer 128 bytes

Direct Map

128 bytes

128 bytes

7.4.2 Tag Structure

7.4.3

The UCAB is also indexed by the virtual address, the tag comparison is physical. Table 7-7
shows the UCAB size and access bits.

Table 7-7. UCAB Size and Access Bits

Size Wa Size UCAB Virtual UCAB UCAB Tag Virtual
y Index Bits Tag Size Index Bits
UCAB | 128B |Direct Map| X128 6:4 1x25 Bits O
Bytes

The least significant 5 bits of the UCAB Tag ([11:7]) is identical with the virtual address
[11:7]. The UCAB Tag has one bit of valid bit. The UCAB Tag doesn’'t have Ditty, LRF,
Lock bits. The valid bit of UCAB Tag is initialized to O upon reset.

Non-blocking Loads and HiT under Miss

The UCAB also supports non-blocking load and hit under miss as well as the Data Cache.
Non-blocking load and Hit under miss allow the pipeline to continue instruction execution
until one of following occurs when an Uncached Accelerated Buffer miss occurs:

1. A subsequent instruction has data dependency with the load that is pending (to
be retired).

2. A Data cache miss occurs or a miss occurs on the UCAB.
3. An uncached load instruction is issued.
4. A pipeline0 stalls.

7-14

X
TOSHIBA Chapter 7 Caches mfﬁzfém

7.5 Cache Control Registers
The operations of the caches are controlled by certain programmable bits in the Config
register. These bits are:

ICE Instruction Cache Enable
DCE Data Cache Enable

IC Instruction Cache Size
DC Data Cache Size
IB Icache Line Size

DB Dcache Line Size

For details of these configuration bits refer to the COPO register section.

The two cache tag registers TagLo and TagHi are 32-bit read/write registers that hold the
tag and state of the cache line during initialization and diagnostics. The Tag registers are
manipulated by MTCO and CACHE instructions.

TagLo
31 12 11 7 6 5 4 3 2 0
PTagLo 0 DIV|R]|L 0
TagHi
where

PTagLo Specifies physical address bits 31:12

D Cache State DIRTY bit (Not used for the Instruction Cache)
\YJ Cache State VALID bit

R LRF Bit

L LOCK Bit (Not used for the Instruction Cache)

0 Must be written as zeros, will return zero on reads

The TagHi register contains instruction- and operation-specific items (see the next
section).

7-15

X
TOSHIBA Chapter 7 Caches mfﬁzfém

7.6 CACHE Instruction

For information on the CACHE instruction, please refer to Appendix C.

7-16

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8. CPUBus

The C790 CPU core is connected to the rest of the system?!, and to external devices,
through the group of on-chip C790 system bus signals called the CPU Bus. This chapter
defines the architecture of the CPU Bus and describes it in the context of an overall sys-
tem design.

This chapter describes the following:

e the CPU Bus architecture and agents on the CPU Bus
« the types of transactions possible between agents on the bus
e the bus protocols for transactions

! The system consists of a DMA Controller (DMAC) as a master, and various slave devices.

8-1

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8.1 Introduction

The CPU Bus is an on-chip bus in a highly integrated processor. All agents (see definitions
section 8.1.1 below) on the CPU Bus are equipped with a CPU Bus interface unit connect-
ed via CPU Bus signals. An agent acts like a master when it initiates reads or writes on
the bus. An agent acts like a slave when it responds to reads or writes initiated by a mas-
ter. For the CPU Bus to operate properly, an arbiter is needed, to perform arbitration be-
tween the CPU and the other bus masters. The arbiter is located in the CPU, and CPU
arbitration behavior is discussed in Section 8.5.1, Arbitration Operations.

The following are main features of the CPU Bus:

Separate data and address buses (Demultiplexed operation)
128-bit data bus

Clocked synchronous operations

Peak transfer rate of 2.1GB/sec (@133 MHz bus clock)
8/16/32/64/128-bit and burst accesses

Multimaster capability

Pipelined operations

No turn-around or dead cycles between transfers

The CPU Bus does not provide:

» Cache coherency support
* Split transactions

8-2

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8.1.1 Terminology

Address Phase is the cycles during which an address is driven on the CPU Bus through
the cycle the address is acknowledged.

Agent refers to different devices on the CPU Bus.

Assert means taking a signal to its active level. An active high signal is “1” when asserted,
and an active low signal is “0” when asserted.

CPU means the C790 CPU. The terms CPU and C790 are used interchangeably in this
chapter.

Data Phase is the cycles during which data are driven on the bus through the cycle they
are acknowledged.

DMAC is the DMA Controller in the system.
Master means the current bus master on the CPU Bus.
MEM refers to the system memory controller.

Negate/Deassert means taking a signal to its inactive state. An active high signal is “0”
when deasserted. An active low signal is “1” when negated.

* (after signal name) means active low signal.

8.1.2 Signal Naming Convention

Table 8-1 shows the prefixes used for naming signals in a system incorporating the C790
CPU Bus.

Table 8-1. System Signal Naming Convention

Signal Signal Type
Prefix

CPU Signals from the CPU multiplexed or logically combined with the DMAC signals
to form the system signals. These signals include: CPUADDR, CPUBE*,
CPURD*, CPUWR*, CPUTSIZE, CPUASTART*, CPUDSTART*, CPUDATA.

SYS The combined or multiplexed signals from any agents on the CPU Bus. These

signals include: SYSADDR, SYSBE*, SYSRD*, SYSWR*, SYSTSIZE,
SYSASTART*, SYSDSTART*, SYSAACK*, SYSDACK*, SYSDATA.

8-3

TOSHIBA

X
Chapter 8 CPU Bus mﬁﬁfém

8.2 CPU Bus Architecture

The CPU Bus design is a synchronous pipelined bus with separate data (128-bit) and
address buses running at half the clock frequency of the CPU. The CPU is connected to
the rest of the system and external devices through this bus. Figure 8-1 illustrates the
architecture of the bus and identifies different agents that can be on the bus.

CPU

D$

CPU
Bus
Interface

WBB

CPU
Bus

DMAC

Figure 8-1. CPU Bus Architecture

Memory
Controller

110
Devices

8-4

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8.2.1 CPU Bus Connectivity for Address and Control Paths

Figure 8-2 illustrates the system-level interconnections for address paths of the CPU Bus.

Support logic is needed to handle the fact that the system contains multiple masters.
AGNT* is used to control the multiplexer in the support logic that selects a master to be
connected to the CPU Bus.

CPUASTART *

*
DMAASTART*>} SYSASTART
*
AGNT Ty o SYSADDR,
SvanE e
BUSCLK |, SvSRrDE
C790 SYSWR*
—
CPU CPUADDR
CPUBE*, ' ¢ Memory
S URDFE: » Controller
CPUWR?*
< >
<
DMAADDR, | Mux ® >
DMATSIZE,
DMARD*, ® >
DMAWR¥
| a
- I/0
DMAC le ° — Devices
< —
«—e L
DMAAACK*
f ™ SYSAACK*
| - j
»
MEMAACK*
IOAACK*

Figure 8-2. CPU Bus Address and Control Path Connections in System

8-5

TOSHIBA

X
Chapter 8 CPU Bus mﬁﬁfém

8.2.2 CPU Bus Connectivity for Data Paths

Figure 8-3 illustrates the system-level interconnections for data paths of the CPU Bus.

For read cycles, the support logic must control the multiplexer so that the correct source of
data is put on SYSDATA.

For write cycles, the support logic must detect whether the cycle is a CPU cycle or a DMA
cycle, and use this to control the multiplexer.

CPUDSTART" — SYSDSTART*
> J
DMADSTART*
>
CPUDATA
C790 < —> SYSDATA Memory
CPU |e q l Controller
< Mux >
>
—>
< ®
DMADATA MEMDATA
|-
DMAC [« L * > |
P
4—T— |ODATA
® > /O
Devices
DMADACK*
< SYSDACK*
+
> MEMDACK*
IODACK*

Figure 8-3. CPU Bus Data Path Connections in System

8-6

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8.3 CPU Bus Signal Descriptions

This section describes the CPU Bus signals and their usage in different bus operations.

8.3.1 Address Bus Signals

CPUADDR[31:4] CPU address bus

CPUADDR[31:4] bits are valid during the address phase and can be sampled by the slave
when CPUASTART* is sampled low.

SYSADDR[31:4] System address bus

SYSADDR[31:4] are multiplexed outputs selecting between CPUADDR[31:4] and DMA
address. They are valid during the address phase and can be sampled by the slave when
SYSASTART* is sampled low.

CPUBEJ[15:0]* CPU byte enables

CPUBET[i]*, driven during the address phase, indicates valid data on byte i of
CPUDATAJ[127:0] during the data phase. CPU byte enables can be sampled by the slave
when CPUASTART* is sampled low. CPU byte enables are used only in CPU single cycles.

SYSBE[15:0]* System byte enables

SYSBE[i]*, driven during the address phase, indicates valid data on byte i of
SYSDATA[127:0] during the data phase. System byte enables can be sampled by the slave
when SYSASTART* is sampled low. System byte enables are used only in CPU single
cycles.

8-7

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

CPUTRANSTYPE[4:0] CPU transaction type

CPUTRANSTYPE[4:0], driven during the address phase, indicates the type of operation.
CPU transaction type can be sampled by the slave when CPUASTART* is sampled low.

Table 8-2. Bus Transaction Types

CPUTRANSTYPE Type of Bus Transaction

00000 Not defined or miscellaneous

00001 - 00111 Reserved
01000 Data Cache Refill due to Load Miss
01001 Data Cache Refill due to Prefetch Instruction
01010 Data Cache Refill due to Store Miss
01011 Uncached Load
01100 Uncached Accelerated Load

01101 - 01111 Reserved
10000 Instruction Cache Miss Refill
10001 Cache Instruction - Fill Suboperation
10010 Uncached Execution

10011 - 10111 Reserved
11000 Data Cache Write-back due to Load/Store Miss
11001 Data Cache Write-back due to Cache Instruction
11010 Uncached Store
11011 Uncached Accelerated Store
11100 Non-allocated Store

11101 - 11111 Reserved

CPURD* CPU read

The CPU asserts this signal to indicate a read operation. This signal can be sampled when
CPUASTART?* is sampled low. This signal is active during the address phase. CPURD* is
used in transfers initiated by the CPU.

CPUWR* CPU write

The CPU asserts this signal to indicate a write operation. This signal can be sampled
when CPUASTART* is sampled low. This signal is active during the address phase.
CPUWR* is used in transfers initiated by the CPU.

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

CPUTSIZE[1:0] CPU transfer size

While driven by the CPU, these signals indicate the size of the transfer in the current
CPU initiated bus cycle. They are driven during the address phase and can be sampled
starting at the edge where CPUASTART* is sampled low.

Table 8-3. CPU Transfer Size

CPUTSIZE[1:0] Transfer Size
00 1 Quadword (Single Cycle)
11 4 Quadwords
SYSTSIZE[2:0] System transfer size

While driven by the system, these signals indicate the size of the transfer in the current
system bus cycle. They are driven during the address phase and can be sampled starting
at the edge where SYSASTART* is sampled low.

CPUASTART* CPU address start

Driven by the CPU, it indicates the start of the address phase. Address, byte enable, and
control signals (CPUADDR[31:4], CPUBE[15:0]*, CPURD*, CPUWR*, and CPUTSIZE)
can be sampled to determine the type of cycle requested starting where CPUASTART?* is
sampled low. CPUASTART* is driven active for only one cycle.

SYSASTART* System address start

SYSASTART* is driven by the system; it indicates the start of the address phase. Address,
byte enable, and control signals can be sampled to determine the type of cycle requested
starting where SYSASTART* is sampled low. SYSASTART* is driven active for only one
cycle.

SYSAACK* System address acknowledge

This signal is an input to all the agents on the CPU Bus indicating that address and con-
trol signals have been sampled by the slave. The master terminates the address phase one
cycle after sampling SYSAACK* low.

CPUDATA[127:0] CPU data bus
This is a 128-bit data bus output from the CPU.
SYSDATA[127:0] System data bus

This is the 128-bit data bus input to all devices on the CPU Bus.

8-9

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

CPUDSTART* CPU data start

During read/write operations, this output from the CPU indicates the start of data phase.
For CPU write operations, the slave can sample data from the bus one cycle after CPUD-
START* has been asserted. For CPU read operations, the slave can output data on the bus
any cycle after the cycle CPUDSTART* has been asserted.

SYSDSTART* System data start

During read/write operations, this output from the system indicates the start of data
phase. Data transfer can begin one cycle after SYSDSTART* has been asserted. For DMA
cycles, if the slave, providing the data, cannot supply data in the next cycle after the as-
sertion of SYSDSTART?, it is the responsibility of the designer to come up with a new
DMA protocol.

SYSDACK* System data acknowledge

This signal is an input to all the agents on the bus indicating the valid status of data on
the bus. During read cycles, it indicates read data are available on the bus to be sampled
by the master. During write cycles, it indicates the slave has sampled the data. This sig-
nal should be asserted for each data transfer during burst operations. During read trans-
actions, data are sampled one cycle after SYSDACK* has been asserted. During write
transactions, the master drives new data on the bus one cycle after detecting SYSDACK*
low.

BUSERR* Bus error

This signal is an input to the CPU and the DMAC which indicates that a bus error has oc-
curred during the transaction. BUSERR* serves to terminate the bus protocol and return
bus ownership to the CPU.

INT[1:0]* Interrupt request lines
These signals are interrupt inputs to the CPU.

SIOINT* Serial I/O interrupt request
This line provides the serial 1/O interrupt from the 1/O controller.

NMI* Non-maskable interrupt
Non-maskable interrupt input to the CPU.

SYSBIGENDIAN Big Endian enable

This input signal is sampled during cold reset and make CPU to operate as big endian
when it is asserted. The input level of this signal must not be changed during the opera-
tion.

8-10

X
System

TOSHIBA Chapter 8 CPU Bus mmsc

CPCONDO Coprocessor conditions

These lines are an input to the CPU as test conditions for some of the branch instructions.

RESET* Reset
Input to the CPU. When this line is asserted, the CPU, DMAC and slave devices execute a
reset.

CPUCLK CPU clock
CPU clock

BUSCLK Bus clock

Bus clock: 1/2, 1/3 or 1/4 frequency of the CPUCLK.
AREQ* Address bus request

This signal is an output from the DMAC to the CPU. When it is asserted, the DMAC re-
quests the address bus mastership.

AGNT* Address bus grant

This signal is an output from the CPU to grant the bus mastership to the DMAC. This
signal is asserted in response to assertion of the AREQ* signal.

REL* Bus release request

This signal is asserted by the CPU to request that the current bus owner release the CPU
Bus.

8-11

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8.4 Overview of CPU Bus Operations

This section discusses CPU Bus operations; it covers processor requests, DMA operations,
and bus error operation.

In this section descriptions show CPU signals followed by the system lines, in parentheses,
onto which they are asserted. For example: CPUASTART* (SYSASTART*) means
CPUASTART* is asserted on the SYSASTART* line. Where a value is given, the bits
output by the CPU are shown, followed by the bits, in parentheses, on the system lines.
For example if we have 11 on CPUTSIZE[1:0], during a CPU bus cycle, then we will get
011 on the SYSTSIZE[2:0]. This will be shown as 11 (011).

8.4.1 CPU Bus Operations

The CPU Bus is different from conventional buses in that it allows pipeline operations. In
this case, pipeline implies up to two outstanding requests before any data transaction has
taken place. For instance, the CPU may issue two back-to-back read requests to main
memory before any data have been returned. Note that at any time, there can only be two
outstanding requests on the bus. The master requiring more than two operations has to
wait until the first request has been serviced completely prior to issuing the third one.

8.4.2 Processor Requests

The CPU issues single requests, burst requests or a series of requests to other agents on
the bus. These requests are referred to as processor requests initiated through the CPU
Bus interface.

The processor requests are in response to the following system events:

e Load miss

e Store miss

« Write-back buffer writes (dirty data cache lines, uncached writes, etc.)
* Uncached loads and uncached accelerated loads

* Instruction miss and uncached instruction fetch

Processor read/write requests can be a burst, quadword, or partial quadword of data to
and from the main memory or any other system resources. A processor-initiated burst is
always 4 quadwords.

8.4.2.1 Read Requests

The CPU initiates read requests by driving address and control on the bus and asserting
CPUASTART* (SYSASTART?*) to indicate valid address and control. The CPU will keep
driving address and control until the slave device has acknowledged the address phase by
asserting address acknowledge, SYSAACK?*. For burst reads, the CPU drives CPUTSIZE
(SYSTSIZE) to 11 (011) to indicate burst reads. The CPU also indicates that it is ready to
accept read data by asserting CPUDSTART* (SYSDSTART?*). The slave device returns the
requested data on the data bus by asserting SYSDACK*, data acknowledge.

8-12

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8.4.2.2 Write Requests

The CPU initiates write requests by driving address and control on the bus and asserting
CPUASTART* (SYSASTART*). The CPU also drives data on the bus and indicates that by
asserting CPUDSTART* (SYSDSTART?*). The slave device accepts the address and data
by asserting SYSAACK* and SYSDACK?*, respectively. Burst writes are indicated by
driving CPUTSIZE (SYSTSIZE) to 11 (011) during the address phase.

8.4.3 Bus Error Operations

Bus error occurs when the CPU or DMA initiates cycles but there are no devices on the
CPU Bus responding to the cycles. The absence of response to either the address phase or
the data phase will cause the bus error condition. The bus error is always imprecise.

When bus error occurs, all the agents including the CPU, DMAC, and slave devices on the
CPU Bus will terminate the current bus cycle.

In the case where CPU is the initiator of the cycle, there can be two types of bus error:

+ Data load/store bus error
* |Instruction fetch bus error

Bus error sets the corresponding exception bit in the CAUSE register. Subsequently, the
CPU will jump to the proper error handler for the examination of the exception. However,
the bus error exception is imprecise. There is no guarantee that the CPU can recover from
this error condition.

In case the DMAC is the initiator of the cycle, the types of bus error depends on the im-
plementation of the DMAC. After bus error occurs, the DMAC will release the bus master-
ship back to the CPU and assert interrupt or NMI to the CPU. The interrupt or NMI rou-
tine will then handle the bus error condition for the DMAC.

8-13

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8.5 CPU Bus Transaction Protocols and Timing

This section describes transaction protocols and the timing for the following CPU Bus op-
erations:

* Arbitration

e CPU single operations (one quadword)

e CPU burst operations (four quadwords)

¢ CPU non-pipelined single operations (one quadword)
¢ CPU non-pipelined burst operations (four quadwords)
* Bus error operations

8.5.1 Arbitration Operations

An arbiter is required to mediate between devices requesting the CPU Bus. The arbiter is
located in the CPU. The CPU is the default bus master; AREQ* and AGNT* are both
deasserted during RESET.

A master other than the CPU may request the bus by asserting the request signal, AREQ*.
In response to the AREQ* signal, the CPU will issue the grant signal, AGNT*, to grant
the address bus to the requesting master. In the cycle AGNT* is sampled active by the bus
master, the master starts the address phases and deasserts AREQ* in the beginning of
the last address phase. When the corresponding data phases commences, the CPU or the
requesting master starts the data transfers depending on the DMA transfer. Data phases
follow the exact order of address phases. The arbitration signals are shown in Figure 8-4.

AREQ*

CPU AGNT

\ 4

Bus Master
REL*

\ 4

CPU Bus

Figure 8-4. Connection of Arbitration Signals

The arbitration priority in using the CPU Bus is that the DMAC always has higher priori-
ty than the CPU. When both the CPU and the DMAC arbitrate for the CPU Bus, the arbi-
ter grants the bus mastership to the DMAC. The CPU can assert REL* to the DMAC in an
effort to get the bus ownership back from the DMAC. The CPU will proceed with the
transfer once the DMAC has released the CPU Bus.

The arbitration cycles and protocol are shown in Figure 8-5. In response to the DMAC asserting its
request AREQ*, the arbiter asserts AGNT* in cycle 3 which is the arbitration cycle. The DMAC
samples AGNT* asserted and begins its address phases. When the DMAC asserts to begin the last
address phase, it deasserts its request line AREQ* in cycle 4. The arbiter then waits for the
SYSAACK?* cycle to deassert AGNT* to release bus mastership back to the CPU.

8-14

TOSHIBA

Chapter 8 CPU Bus m

X
System
» RISC

1

BUSCLK /__/

AREQ* _\

9

-\

F\

AGNT A / f
SYSADDR cPU X Master \ X cPU
SYSASTART* cPU / | \M / cPU j
sysaacks J _ j
Figure 8-5. Arbitration Protocol
8.5.1.1 Cycle Stealing

Cycle stealing refers to the CPU'’s ability to preempt a master in order to perform a bus
operation. This operation could be either due to the write back buffer (WBB) being almost
full (having more than 64 bytes filled up) or the CPU needing to perform an instruction or
data read. These operations are collectively referred to as cycle stealing operations.

Figure 8-6 illustrates the cycle stealing protocol. The arbiter asserts the REL* (Release)
signal in response to the CPU’s request cycles. The master deasserts its request after
having finished its operations. When the master has begun the last address phase with
the master deasserts the AREQ* signal indicating to the arbiter that the bus will be relin-
quished; as indicated in cycle 9. When the address phase ends, the address bus is returned
to the CPU by the deassertion of AGNT* in cycle 12. The arbiter deasserts REL* at the
same time AGNT* is deasserted. The data phases follow the same order as the address

phases.

1

BUSCLK /—_/
AREQ* _\

2

"\

3

"\

4

"\

5 6

AVAV

7

"\

8 9

10

AVAVAY

11

"\

12

"\

13

"\

14

"\

15

"\

16

"\

17

"\

18

"\

19

AVAV

\

AGNT*

SYSADDR :X

CP

=<

Master

X Master'’s las

t add

eSS

cPU

SYSASTART* \CP

C
T

\
\ce

SYSAACK*

REL*

\ |

\

/
y

Figure 8-6. Cycle Stealing Protocol

8-15

TOSHIBA

X
Chapter 8 CPU Bus mﬁﬁfém

8.5.2 CPU Single Operations

CPU Single operations transfer one quadword.

In single operations, the CPU drives the address, byte enables, and the read/write signals
and indicates their valid status by asserting CPUASTART* (SYSASTART*). The slave
samples valid address and control lines and responds by asserting SYSAACK*. In single
operations, CPUTSIZE (SYSTSIZE) is always 00 (000).

When the CPU detects SYSAACK?* active and is ready to put another address on the bus,
it will start another address phase. The bus only supports two levels of address pipelining.
That means only two address phases can be outstanding before any data phase begins.

The CPU indicates that it is ready to accept/supply data by asserting CPUDSTART?*
(SYSDSTART*) one cycle prior to actually accepting/supplying it. For read cycles, the
slave supplies the data and indicates that the data is ready by asserting SYSDACK®*. For
write cycles, the CPU supplies data one cycle after CPUDSTART* (SYSDSTARTY) is as-
serted, and the slave accepts the data by asserting SYSDACK*.

8.5.2.1 CPU Single Reads

The fastest CPU single read is 2 cycles. Address and data phases for AddrA illustrate the
fastest CPU single read cycle. The CPU asserts CPUASTART* (SYSASTART?*) to begin
the address phase in cycle 1. The slave device asserts SYSAACK* in cycle 1 to indicate
that it has sampled the address. The CPU then begin another address phase in cycle 3.
The assertion of SYSDACK®* by the slave device in cycle 1 triggers the CPU to sample
SYSDATA at the end of cycle 2.

oo P\
SYSADDR :X AddrA X AddrB X AddrC X AddrD
SvsDATA) < Vo
sveroze Yo/ [o 0 []
svowre | / U U U / /
svsro [[[

svsasTarT" "\ AV A N /| LL :
somers__[ff__/ / W]
ssostare ___ [\ f]
SYSDACK* __e \ /7_

Figure 8-7. CPU Single Reads

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8.5.2.2 CPU Single Writes

The fastest CPU single write is 2 cycles. Address and data phases for AddrA illustrate the
fastest CPU single write cycle. The CPU always drives data onto CPUDATA one cycle
after the assertion of CPUDSTART* (SYSDSTART*). For example, in, the CPU drives
CPUDATA in cycle 2 which is one cycle after the assertion of CPUDSTART*
(SYSDSTART*) in cycle 1. The slave device samples SYSDATA one cycle after the
assertion of SYSDACK*.

suse T\ [\ O\)
SYSADDR :X AddrA X AddrB X AddrC X AddrD
SYSDATA oA X X B I 1)(D
CPUDATA X A// X X B // X c// I //
srsze. Yo J0_v_)) S AT
s\ | | | i
o] | | /]

sowoe T\l = ‘
e\ 0 T

Figure 8-8. CPU Single Writes

8-17

TOSHIBA

X
Chapter 8 CPU Bus mﬁﬁfém

8.5.2.3 CPU Single Read-Write-Read-Write Cycles

All adjacent address phases are read-write or write-read cycles. AddrA is a read address
and AddrB is a write address, and so on.

1

BUSCLK /__/

2

gm

__/,__/_

10

C\ [\
A

SYSADDR :X AddrA ddrB X AddrC X AddrD AddrE
SYSDATA X A X B X c X X
CPUDATA X B X X

SYSTSIZE :X

SYSWR*

SYSRD* _\

SYSASTART* |
SYSAACK* \
SYSDSTART* |\

A
\
/
A
L

11

SYSDACK*

\

—
/
\
|

I

—

A
]
A

Figure 8-9. CPU Single Read-Write-Read-Write Cycles

8-18

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8.5.3 CPU Burst Operations

CPU Burst operations transfer four quadwords. In burst operations, the CPU drives the
address and control signals and indicates their validity by asserting CPUASTART*
(SYSASTART?*). The slave samples valid address and control lines and asserts SYSAACK*
to acknowledge the address phase. The address phase is the cycles from CPUASTART*
(SYSASTART?*) asserted to one cycle after SYSAACKY* is asserted.

When the CPU detects SYSAACK* active and has another address ready, it will start ano-
ther address phase.

The CPU indicates that it is ready to accept/supply data by asserting CPUDSTART?*
(SYSDSTART*) one cycle prior to actually accepting/supplying it. For read cycles, the
slave supplies the data and indicates that data are valid by asserting SYSDACK®* one cy-
cle prior to the data being available. For write cycles, the CPU supplies data one cycle af-
ter CPUDSTART* (SYSDSTART?) is asserted, and the slave accepts the data by asserting
SYSDACK?*. For burst cycles, there are many SYSDACK* for data transfer.

The CPUTSIZE (SYSTSIZE) indicates the number of quadwords in the transfer. The CPU
initiated cycles use only values of either 00 (for CPU Single operations) or 11 (for CPU
Burst operations), which are single and burst of 4 quadwords respectively.

8.5.3.1 CPU Burst Reads

The fastest CPU burst read is 5 cycles. Address and data phases for AddrA illustrate the
fastest CPU burst read cycle. There are four SYSDACK* sent by the slave device for every
CPU burst read cycle. The slave device asserts SYSDACK* in cycle 1, 2, 3, and 4 to indi-
cate that data can be sampled at the end of cycle 2, 3, 4, and 5 by the CPU.

sse PO\
SYSADDR :X AddrA X AddrB X AddrC X AddrD
SYSDATA XAl X A2 X A3 X A4 X Bl X B2 X B3 X B4X
S S i) B S B)
-
s\ ” f f ” f i f ”
svsasrarrs 7] LL 77
svsmoe T\ /]] .
SYSDSTART* |\ / / / ‘/7_
SYSDACK* _\ /

Figure 8-10. CPU Burst Reads

8-19

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8.5.3.2 CPU Burst Writes

The fastest CPU burst write is 5 cycles. Address and data phases for AddrA illustrate the
fastest CPU burst write cycle. After assertion of CPUDSTART* (SYSDSTART?*) in cycle 1,
the CPU drives the first data on CPUDATA in cycle 2. As SYSDACK?* is sampled asserted
in cycles 1, 2, 3, and 4, the CPU drives a new data on CPUDATA at the end of cycles 2, 3,
4, and 5.

1 2 3 4 5 6 7 8 9 10
wee P\ SV
SYSADDR :X AddrA X AddrB AddrC X AddrD
SYSDATA X Al X A2 X A3 X A4 X B1 X B2 X B3 X B4
CPUDATA X Al /X A2 B1 /X B2 /X B3 /X B4

SYSTSIZE

/77
[]]

i / i /

mges g

)
\
|
o
sawee T\) Ll
(i
&

\
‘e
s [W/ f \

[[

SYSWR*

SYSRD*

SYSASTART*

SYSDSTART*

=_ oo <<
|

/ 1l -

SYSDACK*

—
—

Figure 8-11. CPU Burst Writes

8-20

TOSHIBA

Chapter 8 CPU Bus m

X
System
» RISC

8.5.3.3

CPU Burst Read-Write Cycles

All adjacent address phases are read-write or write-read cycles. AddrA is a read address
and AddrB is a write address, and so on.

BUSCLK

SYSADDR

SYSDATA

CPUDATA

SYSTSIZE

SYSWR*

SYSRD*

SYSASTART*

SYSAACK*

SYSDSTART*

SYSDACK*

8.5.34

.

-
8
8

O\

O\

—

:X AddrA X AddrB X AddrC
X Al X A2 X A3 X A4 X B1 X B2 X B3 X B4 C1
X B1 X B2 X B3 X B4

X

[

,
-
L
-
=

LT

[
ﬂ

1ol r

—

Figure 8-12. CPU Burst Read-Write Cycles

CPU Burst Write-Read Cycles

All adjacent address phases are read-write or write-read cycles. AddrA is a write address
and AddrB is a read address, and so on.

BUSCLK

SYSADDR

SYSDATA

CPUDATA

SYSTSIZE

SYSWR*

SYSRD*

SYSASTART*

SYSAACK*

SYSDSTART*

SYSDACK*

—

SR AU AU Y A B AU B A B
:X AddrA X AddrB X AddrC
X Al X A2 X A3 X A4 X B1 X B2 X B3 X B4 X C1
oA a2 f A) A | c

sl

B

\

ll
-
L
-
=

[

1R

ﬂ

— |

Figure 8-13. CPU Burst Write-Read Cycles

8-21

TOSHIBA

X
Chapter 8 CPU Bus mﬁﬁfém

8.5.4 CPU Non-Pipeline Single Operations

The CPU Bus can support non-pipeline operations as well as pipeline operations. The
non-pipeline operations are done simply by delaying the assertion of SYSAACK* until the
last SYSDACK?* of the bus transaction. The advantage of this is that the peripheral does
not need to save the current address; it just decodes the address on the address bus for the
current operation. Using this mode of operation simplifies the peripheral interfaces to the
CPU Bus but it degrades the system performance.

8.5.4.1 CPU Non-Pipeline Single Reads

All adjacent address phases are read cycles.

BUSCLK

SYSADDR

SYSDATA

SYSTSIZE

SYSWR*

SYSRD*

SYSASTART*

SYSAACK*

SYSDSTART*

SYSDACK*

4 5

O\

0.
-

9 10

C O\

:

S
pd
&
=
>

AddrB

AddrC

D

X
o
H
H

-

L0k
e

CLCCn

-

[
L
(I

117

J_—

Figure 8-14. CPU Non-Pipeline Single Reads

8-22

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8.5.4.2 CPU Non-Pipeline Single Writes

All adjacent address phases are write cycles.

s PO\
SYSADDR :X AddrA X AddrB X AddrC
CPUDATA X A X X B X X C
SYSDATA X A X X B X X C
svosze N o : o

svowre) n n

—— I I

somoe S ST

Figure 8-15. CPU Non-Pipeline Single Writes

8.5.5 CPU Non-Pipeline Burst Operations

8.5.5.1 CPU Non-Pipeline Burst Reads
All adjacent address phases are read cycles.

2 3 4 5

10

BUSCLK

:
:
E«,
:

iEl

SYSADDR

SYSDATA X Al X A2 X A3 X A4

SYSTSIZE

SYSWR*

SYSRD*

X

H

3
U
S

SYSAACK*

-

SYSDSTART*

L IAR e

—

Figure 8-16. CPU Non-Pipeline Burst Reads

SYSDACK*

8-23

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8.5.5.2 CPU Non-Pipeline Burst Writes

All adjacent address phases are write cycles.

s PO\
SYSADDR :X AddrA X AddrB

R N) S8) G0 00)
T)) A) R G0)
SYSTSIZE :X 3 X 3

svowre 1\ n

—— I

sverstar | |

svsmcke | T
svsostart ||/ Y

svsonck 1\) —

Figure 8-17. CPU Non-Pipeline Burst Writes

8-24

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8.5.6 Bus Error Operations

Bus error occurs when there are no slave responding to the address or data phases of the
bus cycle. When bus error occurs, the current bus operation is terminated, and the system
proceeds with the next bus operation. Without bus error detection, the CPU Bus would
remain waiting indefinitely for the SYSAACK* or SYSDACK?* signals.

Bus error is generated by the CPU Bus monitor logic. The monitor logic basically makes
sure that for both address and data phases in the current CPU Bus cycle, there are
SYSAACK* and SYSDACK?*, respectively. In the case, when there is no SYSAACK* or
SYSDACK?* or response to the address or data phase for a pre-defined period of time for
the current CPU Bus cycle, bus error is generated by asserting BUSERR* for one CPU
Bus clock. Bus error has higher priority than SYSAACK* or SYSDACK?* if they are de-
tected in the same cycle.

Bus error is always asserted in reference to the data phase of the cycle. The exact timing
is the cycles from SYSDSTART* asserted to the cycle before the assertion of the next
SYSDSTART*. The bus error signal is sampled when the system is waiting for the asser-
tion of SYSDACK* and/or SYSAACK* of the operation corresponding to the current data
phase. For example, if the address phase of a certain cycle has no response from the slave
devices, the bus monitor logic will wait until the SYSDSTART* of the corresponding data
phase before generating the bus error. The bus monitor logic can generate the bus error
any time before the next data phase begins.

8.5.6.1 Bus Error Exceptions

As mentioned before, two operations can be pipelined on the CPU bus, and these two op-
erations can be initiated from either the CPU as master or the DMAC as master.

If the bus error occurs in the CPU initiated operation, the following occurs:

* abus error exception due to instruction fetch or data access is generated

» the bus error instruction or data address is recorded in the BadPAddr Register
of COPO

e the Status.BEM bit is set (This bit is the bus error mask (BEM) in the COPO
Status Register).

Once a bus error occurs, any further bus errors are ignored until Status.BEM is cleared by
the bus error exception handler.

If the bus error occurs in the DMA initiated operation (DMA cycle), the DMAC will finish
the pending pipeline operations, disable itself, release the CPU Bus, and cause an inter-
rupt. The interrupt routine will then service and re-enable the DMAC accordingly. Table
8-4 summarizes the exception generation:

Table 8-4. Bus Error Exceptions

Operation with the Bus Error | Exception Generated

CPU Initiated Instruction Fetch Bus Error Exception - Instruction Fetch
CPU Initiated Data Access Bus Error Exception - Data Access
DMA Cycle Interrupt Exception

8-25

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8.5.6.2 CPU Bus Cycle Termination

Two pipeline operations can be in progress at any time, but if a bus error occurs, only the
operation with the bus error is terminated. That is, the occurrence of a bus error with one
master does not affect the program execution of another master. For example, if bus error
occurs when the first and second operations are initiated from the DMAC and CPU, re-
spectively, the CPU Bus will terminate the DMA operation and continue with the CPU
operation. Table 8-5 summarizes CPU Bus cycle sequence for all types of CPU Bus cycle
termination.

Table 8-5. Operation Termination Sequence

First Operation Second CPU Bus Cycle Sequence
with Bus Error Operation
CPU Cycle #1 CPU Cycle #2

. CPU Cycle #1 is terminated.
. Bus Error Exception occurs.

. CPU Cycle #2 continues on.
. CPU Cycle #1 is terminated.
. Bus Error Exception occurs.

. DMA Cycle #2 continues on.
. DMA Cycle #1 is terminated.
. CPU Cycle #2 continues on.

3. DMA releases CPU Bus, disable itself (disable further requests
until the interrupt routine re-enable the DMAC), and generate an
interrupt.

4. CPU cycles continues on.
DMA Cycle #1 DMA Cycle #2 1. DMA Cycle #1 is terminated.
2. DMA Cycle #2 continues on.

3. DMAC releases CPU Bus, disable itself (disable further re-
quests until the interrupt routine re-enable the DMAC), and gener-
ate an interrupt.

4. CPU cycles continue on.

CPU Cycle #1 DMA Cycle #2

DMA Cycle #1 CPU Cycle #2

N FRPIWONRP[IWDN PR

8.5.6.3 Bus Error Timing with No Pending Operation

If there are no pending operations on the bus, BUSERR* is ignored at all times.

8.5.6.4 Bus Error Timing with One Pending Operation

If there is one pending operation on the bus, BUSERR* is sampled while waiting for the
assertion of SYSAACK* or SYSDACK?*. If BUSERR?* is asserted, the bus cycle will con-
tinue as if the SYSAACK* and/or the last SYSDACK* has been asserted. Figure 8-18,
Figure 8-19, and Figure 8-20 illustrates the bus error associated with one pending opera-
tion. In these figures, BUSERR* is ignored before CPUDSTART* and after BUSERR* as-
serted because the bus is not waiting for the assertion of SYSAACK* nor SYSDACK?*.

8-26

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

BUSCLK \ /__/

CPUADDR

Addr

CPUWR*

SRV AR B B BT B B B
A
/
A

CPUTSIZE

w

CPUASTART*

SYSAACK*

CPUDATA

DOXDlX D2 X

CPUDSTART*

SYSDACK*

BUSERR*

3

Ignored

PLUCT e

A
A

Bus Error Detection > Ignored

Figure 8-18. One Operation with BUSERR* as the Last SYSDACK*

wsew | VL

CPUADDR X Addr X:

CPUWR* \ /—

CPUTSIZE X 3 X:

CPUASTART* \ j

SYSAACK*

CPUDATA X DO X D1 X D2 X D3 X

CPUDSTART* \ j

SYSDACK* \ /

BUSERR* / \ / -
Ignored > Bus Error Detection >l Ignored >

Figure 8-19. One Operation with BUSERR* as SYSAACK*

8-27

X
Chapter 8 CPU Bus mﬁﬁfém

TOSHIBA
suso [\ L
Y x:
cPUWR* \ [
Y : x:
CPUASTART:]/
SYSAACK*
crupaTA o | o o2 \
CPUDSTART:]/
SvsDACK: \ /
i N Vi
gnored < Bus Error Detection > lgnored
Figure 8-20. One Operation with BUSERR* as SYSAACK*
and the Last SYSDACK*
8.5.6.5 Bus Error Timing with Two Pending Operations

If there are two pending operations on the bus, BUSERR* is sampled while waiting for the
assertion of SYSDACK*. If BUSERRY* is asserted, the bus cycle will continue as if the last
SYSDACK?* has been asserted. The bus cycle will then proceed with the data phase of the

next operation. The bus error that occurred is for the first pending operation.

Figure 8-21 illustrates the bus error associated with two pending operations. In this figure,
BUSERR?* is ignored after BUSERR* asserted because the bus is no longer waiting for the
assertion of SYSDACK?* corresponding to operation AddrA with the bus error, and detec-
tion of bus error for operation AddrB has not started until the assertion of CPUDSTART*.

8-28

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

suso [\ L
CPUADDR T AddrB X
\ /
CPUTSIZE X 3 X 3 X
SYSAACK*] Y
CPUDATA no f oA) A2 X X Bo
" "
SYSDACK* \ /
/ |y
< lgnored [<——————— Bus Error Detection ————————>] Ignored [—— o0]

Figure 8-21. Two Operations with Bus Error as the Last SYSDACK*

8-29

X
TOSHIBA Chapter 8 CPU Bus mfﬁzfém

8-30

X
TOSHIBA Chapter 9 Performance Counter mﬁﬁtcem

9. Performance Counter

The performance counter provides the means for gathering statistical information about
the internal events of the CPU and the pipeline during program execution. The statistics

gathered during program execution aid in tuning the performance of hardware and
software systems based on the processor.

9-1

X
TOSHIBA Chapter 9 Performance Counter mﬁﬁtcem

9.1 Overview

The performance counter consists of one control register and two counters. The control
register controls the functions of the monitor while the counters count the number of
events specified by the control register.

9.2 Performance Counters and Performance Control Registers

The Performance Counter Control Register, or PCCR, and Performance Counter Registers
PCRO and PCR1 are mapped into COPO Register 25. Both the register and counters are
read/write registers accessible by MTPC, MTPS, MTCO, MFPC, MFPS and MFCO
instructions. Each counter is capable of counting one event as specified by the control
register.

The format of the PCCR is shown in Figure 9-1, and the format of PCRO and PCRI1 is
shown in Figure 9-2.

31 30 29 28 27 26 25 24 23 22 21 20 19 15 14 13 12 11 10 9 5 4 3 2 10
C|i0j00|0|0|0|0|00|0|0| EVENT1T U|ISIKI|IE|0O| EVENTO [U|SK|E|O
T 111|1X 0100 |X
E L L
1 0
1111 1)1]2 2111]1]1 5 1]1 (11 |1 5 1]1]1 11
Figure 9-1. Format of the Performance Counter Control Register PCCR
31 30 0
OVFL VALUE
1 31
Figure 9-2. Format of Performance Counter Registers PCRO and PCR1
The interpretation of the PCCR register bits is as follows:
Table 9-1. PCCR Register Bits
Field Function Initial Value
CTE If 1, PCRO and PCR1 counting and exception generation is enabled. 0
EVENTO/1 Event counted by PCRO0/1; see Table 9-5 for details. Undefined
uo/1 PCRO/1 counts event EVENTO/1 when in User mode. Undefined
S0/1 PCRO/1 counts event EVENTO/1 when in Supervisor mode. Undefined
KO/1 PCRO/1 counts event EVENTO/1 when in non-exception Kernel Undefined
mode; i.e. with both STATUS.EXL and STATUS.ERL set to 0.
EXLO/1 PCRO/1 counts event EVENTO/1 when in Level 1 exception handler. Undefined

9-2

X
TOSHIBA Chapter 9 Performance Counter mﬁﬁtcem

9.2.1 Accessing Counters and Registers

The counter control register PCCR and the two performance counter registers PCR0O and
PCR1 are accessed by using MTCO* and MFCO* instructions. All three registers are
mapped to COPO register 25. Table 9-2 illustrates how these registers are written by using
the MTCO instruction, and Table 9-3 illustrates the encoding of the MFCO instructions
used to read the registers.

Table 9-4 show special mnemonics to access the performance Counters and Registers.

Table 9-2. Writing Performance Counters and Registers using MTCO

OpCode[15:11] OpCode[1:0] Operation
11001 00 Move to Counter Control Register
11001 01 Move to Performance Counter Register O
11001 10 unused
11001 11 Move to Performance Counter Register 1

Table 9-3. Reading Performance Counters and Registers using MFCO

OpCode[15:11] OpCode[1:0] Operation
11001 00 Move from Counter Control Register
11001 01 Move from Performance Counter Register 0
11001 10 unused
11001 11 Move from Performance Counter Register 1

Table 9-4. Mnemonics to Access the Performance Counters and Registers

MTPC Move to Performance Counter

MTPS Move to Performance Event Specifies
MFPC Move from Performance Counter

MFPS Move from Performance Event Specifies

“ MTPC, MTPS, MFPC and MFPS are the special encoding of MTCO and MFCO.

9-3

X
TOSHIBA Chapter 9 Performance Counter mﬁﬁtcem

9.2.2 State of Performance Counter Control Registers Upon Reset

The CTE bit of the Performance Counter Control Register PCCR is initialized to O upon
reset. This prevents event counting and interrupt generation until the control registers
are initialized. It also allows a precise way for counters to be initialized by software; see

the section 9.3.2 for more details. Note that the remaining bits of PCCR and both registers
PCRO and PCR1 must be initialized by software.

9-4

X
TOSHIBA Chapter 9 Performance Counter mﬁﬁtcem

9.3 Counter Operation

The performance counters PCRO and PCR1 increment by 1 whenever their corresponding
count event occurs, and the counter is enabled. The count event for PCRO is specified by
PCCR.EVENTO and the count event for PCR1 is specified by PCCR.EVENTI1. The
encoding of the EVENT field is specified in Table 9-5, and discussed in detail later. A
counter is enabled only when both of the following conditions are satisfied:

1. The global counter enable flag PCCR.CTE is set to 1, and

2. The current privilege mode matches the permitted privilege mode for each
counter. The values in PCCR.UO, PCCR.S0, PCCR.KO, and PCCR.EXLO specify the
permitted privilege modes for PCRO and PCCR.U1.

PCCR.S1, PCCR.K1, and PCCR.EXL 1 specify the permitted privilege modes for
PCRI1. For example, if the current privilege mode is SUPERVISOR, PCRO will
operate only if PCCR.S0 is set to 1. Note that there is no “ERLO” or “ERL1” flag in
PCCR. This is because counters are unconditionally disabled when in level 2
handlers.

9-5

X
TOSHIBA Chapter 9 Performance Counter mﬁﬁtcem

9.3.1 Counter Events

A counter increments if it is enabled and its trigger event occurs. The permissible values
for PCCR.EVENTO and PCCR.EVENTI1 are as shown in Table 9-5 below. The events are
described in Section.9.3.1.1Event Descriptions

Table 9-5. Counter Events

Event | Counter O Counter 1
0 reserved Low-order branch issued
1 Processor cycle Processor cycle
2 Single instruction issue Dual instruction issue
3 Branch issued Branch mispredicted
4 BTAC miss JTLB miss
S ITLB miss DTLB miss
6 I$ miss D$ miss
7 DTLB accessed WBB single request unavailable
8 Non-blocking load/store WBB burst request unavailable
9 WBB single request WBB burst request almost full
10 | wBB burst request WBB burst request full
11 | CPU address bus busy CPU data bus busy
12 | Instruction completed Instruction completed
13 Non-BDS instruction completed Non-BDS instruction completed
14 | reserved COP1 instruction completed
15 | Load completed Store completed
16 | No event No event
17-31 | reserved reserved

X
TOSHIBA Chapter 9 Performance Counter mﬁﬁtcem

9.3.1.1 Event Descriptions

In event descriptions, the word ‘branch’ (for example, ‘branch issued’, or ‘branch miss-
predicted’) means any ‘transfer of control’ instruction that is subject to prediction (that is,
all the conditional branch instructions, J, and JAL). The JR, JALR, ERET, SYSCALL,
BREAK, and TRAP instructions are not included.

Branch issued This event is triggered whenever a branch is issued to a functional
pipe. Note that a branch that is issued in a pipelined
implementation may get canceled if an instruction prior to it
signals an exception.

Branch This event is triggered whenever the predicted branch address

mispredicted (taken or not-taken) is incorrect. Note that a branch that is issued
in a pipelined implementation may get canceled if an instruction
prior to it signals an exception.

BTAC miss This event is triggered whenever the instruction address lookup
into the BTAC fails. Counts low-order (even) branch instructions
that miss the BTAC. Note that high-order (odd) branch does not
refer the BTAC.

COP1 This event is triggered when a COP1 instruction completes. The
instruction event is signaled even if the COP1 instruction completes
completed successfully, but appears in the branch delay slot of a branch-

likely instruction and is therefore nullified.

CPU address Generates a signal once every BUSCLK (not CPU clock) that the

bus busy CPU address bus is unavailable. The CPU address bus is
considered unavailable whenever it is busy, or when two addresses
have been issued but the data for the first address has yet to
return.

Data cache miss This event is triggered whenever a data cache miss is detected.
See Table 9-6. for the D$ miss definition.

Table 9-6. Definition of Data Cache Miss

Access DCE Page Attr. Hit/Miss
0 Uncached, UCA, Cached Miss
Load
1 Uncached, UCA Miss
Cached Hit/Miss
0 Uncached, UCA, Cached Hit
Store 1 Uncached, UCA Hit
Cached Hit/Miss
0 Uncached, UCA, Cached Uncount *
Pref 1 Uncached, UCA Uncount *
Cached Hit/Miss

In this event, the data cache miss is defined as any load/store/pref
instructions which may generate bus read operations to get missed data from
external memory.

* Prefetch to the Uncached or UCA page is considered as nop.

9-7

TOSHIBA

X
Chapter 9 Performance Counter mﬁﬁtcem

DTLB accessed

DTLB Miss

Dual instruction
issued

Instruction
cache miss

Instruction
completed

ITLB miss
JTLB miss
Load completed

Low-order
branch issued

Barring canceled instructions, this event counts the total number
of executed loads and stores. Thus, ‘data cache miss’ divided by
‘DTLB accessed’ provide a good estimate of the D miss rate
(assuming no uncached loads/stores occur). Also, ‘DTLB miss’
divided by ‘DTLB accessed’ provides the DTLB miss rate. DTLB is
accessed even when unmapped page is accessed in case that minor
revision number is 0x10 or later.

This event is triggered whenever a DTLB miss is detected. DTLB
is accessed even when unmapped page is accessed in case that
minor revision number is 0x10 or later.

This event is signaled whenever both functional pipes of the C790
are issued instructions*. The event counter is incremented by 1.

This event is triggered whenever an instruction cache miss is
detected.

This event triggers when an instruction completes. Note that some
instructions (e.g. SYSCALL, TEQ, TEQI, etc.) signal exceptions as
a normal part of their operation. Such instructions are considered
complete whether or not the “normal” exception was raised.
Therefore, an “instruction complete” event is signaled even if a
TEQ succeeds (i.e. raises a Trap exception). However, if a “true”
exception occurs (e.g. a counter exception is signaled while the
TEQ is executing), the instruction is canceled and no “instruction
complete” signal is generated. Similarly, an instruction in the
branch delay slot (BDS) of a branch-likely instruction is counted
as complete even if the BDS instruction is nullified. If the BDS
instruction is canceled because of a “true” exception, no
“instruction completed” event is signaled.

C790 Implementation Note: Up to two instructions can complete
every cycle in the C790. When two instructions do complete, the
event counter is incremented by 2.

This event is triggered whenever a ITLB miss is detected.
This event is triggered whenever a JTLB miss is detected.

This event triggers when a load instruction completes. Note that
the event is signaled even if the load appears in the branch delay
slot of a branch-likely instruction that is not taken and is therefore
nullified.

Counts the numbers of branches that were issued that appeared in
the low-order (even) position of an instruction pair fetch. This
count is needed since only these branches are subject to BTAC
lookup.

No event This “event” effectively disables the corresponding counter. It is

useful principally if only one of the two counters need be activated.
Non-BDS This event triggers when an instruction that does not have a
instruction branch delay slot completes. In particular, it does not trigger when
completed a branch or jump instruction completes. However, it does trigger
(for stepping) when the instruction in the branch delay slot of the branch or

jump completes. In the case of a branch-likely instruction, the
instruction in the branch delay slot triggers the event even if this
instruction is nullified. Note: this event is useful for stepping over
instructions.

* (Dual instruction issued) *2 + (Single instruction issued) = instruction issued
(Instruction issued) — (instruction completed) = instruction canceled

9-8

TOSHIBA

X
Chapter 9 Performance Counter mﬁﬁtcem

Non-blocking
load/store

(1st cache miss):

Processor cycle

This event is signaled whenever a cached load/store/pref
instruction misses on the Data Cache and there is no pending
data cache miss, UCAB miss and uncached load.

This event triggers on every processor clock cycle.

Single This event is signaled whenever only one of the functional pipes
instruction of the C790 is issued an instruction*.
issued

Store completed

This event triggers when a store instruction completes. Note that
the event is signaled even if the store appears in the branch delay
slot of a branch-likely instruction that is not taken and is
therefore nullified.

WBB Single A non-burst request was made to the WBB.

Request

WBB Burst A burst request was made to the WBB.

Request

WBB Single A non-burst request was made to the WBB, but there were
Request insufficient free entries in the WBB to service it. All 8 entries are
unavailable used at that time.

WBB Burst A burst request was made to the WBB, but, the WBB was
Request completely full, or there were not enough to service the request. 5,
unavailable 6, 7, 8 entries are used at that time.

WBB Burst A burst request was made to the WBB, and even though there
Request almost ~ were free entries, there were not enough to service the request. 5,
full 6, 7 entries are used at that time.

WBB Burst A burst request was made to the WBB, but the WBB was
Request full completely full. All 8 entries are used at that time.

* (Dual instruction issued) *2 + (Single instruction issued) = instruction issued
(Instruction issued) — (instruction completed) = instruction canceled

9-9

X
TOSHIBA Chapter 9 Performance Counter mﬁﬁtcem

9.3.2 Handling Performance Counter Exceptions

A performance counter exception is detected by an instruction if the following condition
holds true:
~STATUS. ERL && PCCR. CTE && (CTRO. OVFL || CTRL. OVFL)

Note that software should not rely on the exception occurring if the instruction is nullified;
i.e. it appears in the branch delay slot of a branch likely instruction that is not taken.

C790 Implementation Note: C790 implementation always counts events that occur within
nullified instructions.

The instruction detecting a counter exception is canceled by the exception, and instruction
execution continues as follows:

if (in branch delay slot) {
ErrorEPC = PC - 4;
CAUSE. BD2 = 1;

el se {
Error EPC = PC,
CAUSE. BD2 = 0;
}
if (STATUS. DEV)
PC = O0xBFC00280; // Uncached counter xcp handl er

el se

PC = 0x80000080; // *“Normal” counter xcp handl er
STATUS. ERL = 1;
CAUSE. EXC2 = 2; /1 Counter exception

The description above makes use of the BD2 and EXCZ fields in the CAUSE register. Both
are fields newly introduced in the C790 and occupy the bit positions shown below.

313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

S
BB | III
D|CE |0|0|0O|0|0|0|0|O|O] EXC2|P|O]|O P|P|0|0]|0O EXC 0|0
D)
2 7 P32

Figure 9-3. CAUSE Register Fields

C790 Programming Note: Note that the “normal” exception entry point is in ksegO space.
That is, the address is unmapped and the caching policy is determined by CONFIG.KO. If
you don't want to disturb the cache while counting and stepping, ksegO should be
configured in “uncached” mode. If cache data preservation is secondary to counter
exception servicing performance counter overflow, kseg0 should be configured in “cached”
mode.

9-10

X
TOSHIBA Chapter 9 Performance Counter mﬁﬁtcem

9.3.3 Priority of Counter Exceptions

Counter exceptions have the highest priority after cold reset and NMI. If a cold reset
occurs the processor is initialized — so a simultaneous counter exception is discarded. If an
NMI occurs, the NMI handler is entered with either PCRO.OVFL or PCR1.OVFL (or both)
set to 1, and ErrorEPC pointing at the instruction causing the counter overflow.
(ErrorEPC is used because NMI is handled as a level 2 exception.) Once the NMI handler
exits, the instruction that caused the overflow is re-executed. However, since PCR0O.OVFL
or PCR1.OVFL is 1, the instruction is canceled once more and the counter exception
handler is entered.

9.3.4 Initializing Counters

Let us look at the code sequence needed to initialize counters and activate them. In the
example below, PCRO is set up to count clocks in all operating modes and report a counter
exception after the count exceeds 231. CTR1 is set up to count stores while in supervisor
mode only, and report a counter exception after the count exceeds 231. The code must be
executed while in level 2 exception mode (ERL=1).

STATUS. ERL = 1; /1 Set ERL (to inhibit counting)
Error EPC = <target instruction where counting is to start>

PCRO

PCCR.
PCCR.
PCCR.
PCCR.
PCCR.

3o
2

// Init CTRO, and ...
1; /1 ...set up to count clocks ...
; [/ ...in all privilege nodes

RB8S
pa
I n

PCR1 = 0; /1 Init PCRT1, and ...

PCCR. EVENT1 = 15; /1 ...set up to count conpleted stores ...
PCCR Ul = O; /1 ...while in supervisor node

PCCR. S1 =
PCCR K1 =
PCCR EXL1

PCCR CTE = 1; [// Enable global counter flag

ERET /| Execute ERET to clear ERL -
/1 counting begins with ERET' s target
/1l Note that the ERET instruction also
/'l guarantees that the COPO state
/1 updated (e.g. CCR) is valid.

9-11

X
TOSHIBA Chapter 9 Performance Counter mﬁﬁtcem

9.3.5 The Note to Read Counters

Whenever you want to read a counter by MTCO or MTPC, be sure that any counting
events must NOT occur, otherwise you may get wrong number. For example, counter for
TLB event should be read in the unmapped area, that of instruction completion event
should be read in the ERL=1 (level 2 exception) area or other disabled area.

It is a implement-dependent that when the event is counted. It depends on the number of
the pipeline stages and so on.

To write a robust code among silicon versions and mask versions, you read the counters
after flushing the pipeline by SYNC.P instruction. C790 is a pipeline processor. It is
required for the instruction completion type event.

It is a nature of event counting that some inaccuracy exists. You don't need to be
surprised if different number is observed in different version of silicon/mask.

9-12

X
TOSHIBA Chapter 10 Floating-Point Unit, CP1 mﬁﬁtcem

10. Floating-Point Unit, CP1 (Option)

This chapter describes the floating-point operations, including the programming model,
instruction set and formats.

The floating-point operations fully conform to the requirements of ANSI/IEEE Standard
754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

10-1

X
TOSHIBA Chapter 10 Floating-Point Unit, CP1 mﬁﬁtcem

10.1 Overview

All floating-point instructions, as defined in the MIPS ISA for the floating-point
coprocessor, CP1, are processed by the other hardware unit that executes integer
instructions.

The floating point execution unit can be disabled by the coprocessor usability CU bit
defined in the CPO Status register.

10.2 Floating Point Register

10.2.1 Floating-Point General Registers (FGRs)

CP1 has a set of Floating-Point General Purpose registers (FGRs) that can be accessed in
the following ways:

As 32 general purpose registers (32 FGRs), each of which is 32 bits wide when the FR
bit in the CPU Status register equals 0; or as 32 general purpose registers (32 FGRSs),
each of which is 64-bits wide when FR equals 1. The CPU accesses these registers
through move, load, and store instructions.

As 16 floating-point registers (see the next section for a description of FPRs), each of
which is 64-bits wide, when the FR bit in the CPU Status register equals 0. The FPRs
hold values in either single- or double-precision floating-point format. Each FPR
corresponds to adjacently numbered FGRs as shown in Figure 10-1.

As 32 floating-point registers (see the next section for a description of FPRs), each of
which is 64-bits wide, when the FR bit in the CPU Status register equals 1. The FPRs
hold values in either single- or double-precision floating-point format. Each FPR
corresponds to an FGR as shown in Figure 10-1.

10-2

TOSHIBA Chapter 10 Floating-Point Unit, CP1 m
Floating-point . . Floating-point . .
R Floating-Point . Floating-Point
Registers (FPR) . Registers (FPR) .
General Purpose Registers General Purpose Registers
(FR=0) (FR=1)
31 (FGR) 0 63 (FGR)
(least) FGRO FPRO FGRO
FPRO
(most) FGR1 FPR1 FGR1
(least) FGR2 FPR2 FGR2
FPR2
(most) FGR3 FPR3 FGR3
(least) FGR28 FPR28 FGR28
FPR28
(most) FGR29 FPR29 FGR29
(least) FGR30 FPR30 FGR30
FPR30
(most) FGR31 FPR31 FGR31
Floating-point
Control Registers
(FCR)
Control/Status Register Implementation/Revision Register
31 (FCR31) 0 31 (FCRO)

Figure 10-1. FP Registers

10-3

X
TOSHIBA Chapter 10 Floating-Point Unit, CP1 mﬁﬁtcem

10.2.2 Floating-Point Registers (FPRS)
The FPU provides:
e 16 Floating-Point registers (FPRs) when the FR bit in the Status register equals 0, or
e 32 Floating-Point registers (FPRs) when the FR bit in the Status register equals 1.

These 64-bit registers hold floating-point values during floating-point operations and are
physically formed from the General Purpose registers (FGRS). When the FR bit in the
Status register equals 1, the FPR references a single 64-bit FGR.

The FPRs hold values in either single- or double-precision floating-point format. If the FR
bit equals 0, only even numbers (the least register) can be used to address FPRs. When
the FR bitis set to a 1, all FPR register numbers are valid.

If the FR bit equals 0 during a double-precision floating-point operation, the general
registers are accessed in double pairs. Thus, in a double-precision operation, selecting
Floating-Point Register 0 (FPRO) actually addresses adjacent Floating-Point General
Purpose registers FGRO and FGRI.

10.2.3 Floating-Point Control Registers

The MIPS RISC architecture defines 32 floating-point control registers (FCRs); the C790
processor implements two of these registers: FCRO and FCR31. These FCRs are described
below:

* The Implementation/Revision register (FCRO) holds revision information.

e The Control/Status register (FCR31) controls and monitors exceptions, holds the
result of compare operations, and establishes rounding modes.

e [FCRI1to FCR30 are reserved.

Table 10-1 lists the assignments of the FCRs.

Table 10-1. Floating-Point Control Register Assignments

FCR Number Use
FCRO Coprocessor implementation and revision register
FCR1 to FCR30 Reserved
FCR31 Rounding mode, cause, trap enables, and flags

10-4

X
TOSHIBA Chapter 10 Floating-Point Unit, CP1 mﬁﬁtcem

Implementation and Revision Register (FCRO)

The read-only Implementation and Revision register (FCRO0) specifies the implementation
and revision number of CP1. This information can determine the coprocessor revision and
performance level, and can also be used by diagnostic software.

Figure 10-2 shows the layout of the register; Table 10-2 describes the Implementation and
Revision register (FCRQO) fields.

Implementation/Revision Register (FCRO0)
31 16 15 8 7 0
0 | Imp | Rev
16 8 8

Figure 10-2. Implementation/Revision Register

Table 10-2. FCRO Fields

Field Description Initial value
Imp Implementation number 0x38
Rev Revision number in the form of y. x Revision Number
0 Reserved. Returns zeroes when read.

The revision number is a value of the form y. x, where:
e yisamajor revision number held in bits 7:4.
* X is aminor revision number held in bits 3:0.

The revision number distinguishes some chip revisions; however, there is not guarantee
that changes to its chips are necessarily reflected by the revision number, or that changes
to the revision number necessarily reflect real chip changes. For this reason revision
number values are not listed, and software should not rely on the revision number to
characterize the chip.

IEEE Standard 754

IEEE Standard 754 specifies that floating-point operations detect certain exceptional
cases, raise flags, and can invoke an exception handler when an exception occurs. These
features are implemented in the MIPS architecture with the Cause, Enable, and Flag
fields of the Control/Status register. The Flag bits implement IEEE 754 exception status
flags, and the Cause and Enable bits implement exception handling.

10-5

X
TOSHIBA Chapter 10 Floating-Point Unit, CP1 mﬁﬁtcem

Control/Status Register (FCR31)

The Control/Status register (FCR31) contains control and status information that can be
accessed by instructions in either Kernel or User mode. FCR31 also controls the
arithmetic rounding mode and enables User mode traps, as well as identifying any
exceptions that may have occurred in the most recently executed floating-point instruction,
along with any exceptions that may have occurred without being trapped.

Figure 10-3 shows the format of the Control/Status register, and Table 10-3 describes the

Control/Status register fields. Figure 10-4 shows the Control/Status register Cause, Flag,
and Enable fields.

Control/Status Register (FCR31)

31 2524 23 22 18 17 12 11 76 21
0 sl 0 Cause Enables Flags RM
EVZOUI VZOUI VZOUlI
7 11 5 6 5 5 2
Figure 10-3. FP Control/Status Register Bit Assignments
Table 10-3. Control/Status Register Fields
Field Description
FS When set, denormalized results can be flushed instead of causing
an unimplemented operation exception.
Cc Condition bit. See description of Control/Status register Condition
bit.
Cause Cause bits. See Figure 10-4 and the description of Control/Status
register Cause, Flag, and Enable bits.
Enables Enable bits. See Figure 10-4 and the description of Control/Status
register Cause, Flag, and Enable bits.
Flags Flag bits. See Figure 10-4 and the description of Control/Status
register Cause, Flag, and Enable bits.
RM Rounding mode bits. See Table 10-5 and the description of
Control/Status register Rounding Mode Control bits.

10-6

X
TOSHIBA Chapter 10 Floating-Point Unit, CP1 mﬁﬁtcem

Bit# 17 16 15 14 13 12
Cause
E|\|/|T|T|L|J|I||BitS
Bit#* 11 10 9 8 7 Enable
|\|/|Z|T|L|J|I||Bits
Bitt 6 5 4 3 2 Flag
Lvlizlolul]| &is

Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation
Unimplemented Operation

Figure 10-4. Control/Status Register Cause, Flag, and Enable Fields

Control/Status Register FS Bit

The FS bit enables the flushing of denormalized values. When the FS bit is set and the
Underflow and Inexact Enable bits are not set, denormalized results are flushed instead of
causing an Unimplemented Operation exception. Results are flushed to either 0 or the
minimum normalized value, depending upon the rounding mode (see Table 10-4 below),
and the Underflow and Inexact of the Cause and Flag bits are set.

Table 10-4. Flush Values of Denormalized Results

Denormalized Flushed Result Rounding Mode
Result RN RZ RP RM
Positive +0 +0 +2Emin +0
Negative -0 -0 -0 -pEmin

Control/Status Register Condition Bit

When a floating-point Compare operation takes place, the result is stored at bit 23, the
Condition bit. The C bit is set to 1 if the condition is true; the bit is cleared to O if the
condition is false. Bit 23 is affected only by compare and CTC1 instructions.

10-7

X
TOSHIBA Chapter 10 Floating-Point Unit, CP1 mﬁﬁtcem

Control/Status Register Cause, Flag, and Enable Fields

Figure 10-4 illustrates the Cause, Flag, and Enable fields of the Control/Status register.
The Cause and Flag fields are updated by all conversion, computational (except MOV. fmt),
CTC1, reserved, and unimplemented instructions. All other instructions have no affect on
these fields.

Cause Bits

Bits 17:12 in the Control/Status register contain Cause bits, as shown in Figure
10-4, which reflect the results of the most recently executed floating-point
instruction. The Cause bits are a logical extension of the CPO Cause register; they
identify the exceptions raised by the last floating-point operation. If the
corresponding Enable bit is set at the time of the exception a floating-point
exception is raised and trapped by CPU. If more than one exception occurs on a
single instruction, each appropriate bit is set.

The Cause bits are updated by most floating-point operations. The Unimplemented
Operation (E) bit is set to 1 if software emulation is required, otherwise it remains 0.
The other bits are set to 0 or 1 to indicate the occurrence or non-occurrence
(respectively) of an IEEE 754 exception. Within the set of floating-point
instructions that update the Cause bits, the Cause field indicates the exceptions
raised by the most-recently-executed instruction.

When a floating-point exception is taken, no results are stored, and the only state
affected is the Cause bit.

Enable Bits

A floating-point exception is generated any time a Cause bit and the corresponding
Enable bit are set. A floating-point operation that sets an enabled Cause bit forces
an immediate floating-point exception, as does setting both Cause and Enable bits
with CTC1.

There is no enable for Unimplemented Operation (E). An Unimplemented exception
always generates a floating-point exception.

Before returning from a floating-point exception, software must first clear the
enabled Cause bits with a CTCI1 instruction to prevent a repeat of the exception
trapping. Thus, User mode programs can never observe enabled Cause bits set; if
this information is required in a User mode handler, it must be passed somewhere
other than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no floating-point
exception occurs and the default result defined by IEEE 754 is stored. In this case,
the exceptions that were caused by the immediately previous floating-point
operation can be determined by reading the Cause field.

10-8

X
TOSHIBA Chapter 10 Floating-Point Unit, CP1 mﬁﬁtcem

Flag Bits

The Flag bits are cumulative and indicate the exceptions that were raised by the
operations that were executed since the bits were explicitly reset. Flag bits are set
to 1 if an IEEE 754 exception is raised, otherwise they remain unchanged. The Flag
bits are never cleared as a side effect of floating-point operations; however, they can
be set or cleared by writing a new value into the Status register, using a CTC1
instruction.

When a floating-point exception is trapped, the flag bits are not set by the
hardware; floating-point exception software is responsible for setting these bits
before invoking a user handler.

Control/Status Register Rounding Mode Control Bits
Bits 1 and 0 in the Control/Status register constitute the Rounding Mode (RM) field.

As shown in Table 10-5, these bits specify the rounding mode that CP1 uses for all
floating-point operations.

Table 10-5. Rounding Mode Bit Decoding

Rounding
ModeRM | Mnemonic Description
(1:0)

0 RN Round result to nearest representable value;
round to value with least-significant bit O
when the two nearest representable values
are equally near.

1 Rz Round toward O: round to value closest to
and not greater in magnitude than the
infinitely precise result.

2 RP Round toward +oo: round to value closest to
and not less than the infinitely precise result.

3 RM Round toward —o: round to value closest to
and not greater than the infinitely precise
result.

10.2.4 Accessing the FP Control and Implementation/Revision
Registers

The Control/Status and the Implementation/Revision registers are read by a Move Control
From Coprocessor 1 (CFC1) instruction.

The bits in the Control/Status register can be set or cleared by writing to the register
using a Move Control To Coprocessor 1 (CTC1) instruction. The Implementation/Revision
register is a read-only register. There are no pipeline hazards (between any instructions)
associated with floating-point control registers.

10-9

X
TOSHIBA Chapter 10 Floating-Point Unit, CP1 mﬁﬁtcem

10.3 Floating-Point Formats

CP1 performs both 32-bit (single-precision) and 64-bit (double-precision) IEEE standard
floating-point operations. The 32-bit single-precision format has a 24-bit signed-
magnitude fraction field (f+s) and an 8-bit exponent (e), as shown in Figure 10-5.

31 30 23 22 0
S e f
Sign Exponent Fraction
1 8 23

Figure 10-5. Single-Precision Floating-Point Format

The 64-bit double-precision format has a 53-bit signed-magnitude fraction field (f+s) and
an 11-bit exponent, as shown in Figure 10-6.

63 62 5251 0
s e f
Sign Exponent Fraction
1 11 52

Figure 10-6. Double-Precision Floating-Point Format

As shown in the above figures, numbers in floating-point format are composed of three
fields:

e signfield, s
e biased exponent, e= E + bias
» fraction, f=bib>....bp-1
where bias =127, p = 24 in single precision,
bias = 1023, p = 53 in double precision

The range of the unbiased exponent E includes every integer between the two values Emin
and Emax inclusive, together with two other reserved values:

« Emin—1 (to encode 0 and denormalized numbers)

* Emax+ 1 (to encode « and NaNs [Not a Number])

For single-and double-precision formats, each representable nonzero numerical value has
just one encoding uniquely.

For single-and double-precision formats, the value of a number, v, is determined by the
equations shown in Table 10-6.

10-10

TOSHIBA

X
Chapter 10 Floating-Point Unit, CP1 mﬁﬁtcem

Table 10-6. Equations for Calculating Values in Single and Double-Precision Floating-Point Format

Equation

Condition

v =NaN

E =Emaxtl and f # 0, regardless of s

v = (-1)°

E=Emaxtland f=0

v = (-1)525(1.f)

Emin < E < Emax

v = (-1)°25™"(0.9)

E=Empin-1and f£0

v = (-1)°0

E=Epin-1andf=0

For all floating-point formats, if v is NaN, the most-significant bit of f determines whether
the value is a signaling or quiet NaN: v is a signaling NaN if the most-significant bit of fis

set, otherwise, vis a quiet NaN.

Table 10-7 defines the values for the format parameters; minimum and maximum
floating-point values are given in Table 10-8.

Table 10-7. Floating-Point Format Parameter Values

Parameter - Format

Single Double
Emax +127 +1023
Emin -126 -1022
Exponent bias +127 +1023
Exponent width in bits 8 11
Integer bit hidden hidden
Fraction width in bits 23t 521
Format width in bits 32 64

T Excluding the sign bit.

Table 10-8. Minimum and Maximum Floating-Point Values

Type

Value

Float Minimum

1.40129846e ™%

Float Minimum Norm

1.17549435e 8

Float Maximum

3.40282347e*®

Double Minimum

4.9406564584124654 %4

Double Minimum Norm

2.2250738585072014e %

Double Maximum

1.7976931348623157e %

10-11

X
System

TOSHIBA Chapter 10 Floating-Point Unit, CP1 mmsc

10.4 Binary Fixed-Point Format

Binary fixed-point values are held in 2's complement format. Unsigned fixed-point values
are not directly provided by the floating-point instruction set. Figure 10-7 illustrates
binary word fixed-point format and Figure 10-8 illustrates binary long fixed-point format;
Table 10-9 lists the binary fixed-point format fields.

31 30 0
| Sign | Integer
1 31
Figure 10-7. Binary Word Fixed-Point Format
63 62 0
| Sign | Integer
1 63

Figure 10-8. Binary Long Fixed-Point Format

Field assignments of the binary fixed-point format are:

Table 10-9. Binary Fixed-Point Format Fields

Field Description
sign sign bit
integer integer value (2's complement)

10-12

X
System

TOSHIBA Chapter 10 Floating-Point Unit, CP1 mmsc

10.5 Floating-Point Instruction Set Summary

Each instruction is 32 bits long, and aligned on a word boundary. This section describes
the overview of instructions for floating-point unit. A detailed description of each
instruction is provided in Appendix D.

10.5.1 Load, Store and Move Instructions (Table 10-10)

Load and Store instructions move data between memory and FPU general purpose
registers(FGR), and Move instructions move data directly between CPU and FPU general
purpose registers(FGR). These instructions are not perform format conversions and
therefore never cause floating-point exceptions. The instruction immediately following a
load can use the contents of the loaded register. However, in such case the hardware
interlocks, requiring additional real cycles. Thus, the scheduling of load delay slots is
required to avoid the interlocking.

Table 10-10. FPU Instruction Set (Optional): Load, Move and Store Instruction

Instruction Description Note
LwcC1 Load Word to FPU (coprocessor 1) MIPS |
SWC1 Store Word from FPU (coprocessor 1) MIPS |
MTC1 Move Word to FPU (coprocessor 1) MIPS |
MFC1 Move Word from FPU (coprocessor 1) MIPS |
CTC1 Move Control Word to FPU (coprocessor 1) MIPS |
CFC1 Move Control Word from FPU (coprocessor 1) MIPS |
LDC1 Load Doubleword to FPU (coprocessorl) MIPS 11
SDC1 Store Doubleword from FPU (coprocessorl) MIPS Il
DMTC1 Move Doubleword to FPU (coprocessorl) MIPS 1l
DMFC1 Move Doubleword from FPU (coprocessorl) MIPS 1l

10-13

X
TOSHIBA Chapter 10 Floating-Point Unit, CP1 mﬁﬁtcem

10.5.2 Conversion Instructions (Table 10-11)

Conversion instructions perform conversion operations between the various data formats.

Table 10-11. FPU Instruction Set(Optional): Conversion Instruction

Instruction Description Note
CVT.S.fmt Floating-Point Convert to Single FP Format MIPS |
CVT.W.fmt Floating-Point Convert to Word Fixed-Point Format MIPS |
CVT.D.fmt Floating-Point Convert to Double FP Format MIPS |
ROUND.W.fmt Floating-point Round to Word Fixed-Point MIPS 1l
TRUNC.W.fmt Floating-point Truncate to Word Fixed-Point MIPS 1l
CEIL.W.fmt Floating-point Ceiling Convert to Word Fixed-Point MIPS 1l
FLOOR.W.fmt Floating-point Floor Convert to Word Fixed-Point MIPS I
CVT.L.fmt Floating-Point Convert to Long Fixed-Point Format MIPS Il
ROUND.L.fmt Floating-point Round to Long Fixed-Point MIPS 1lI
TRUNC.L.fmt Floating-point Truncate to Long Fixed-Point MIPS Il
CEIL.L.fmt Floating-point Ceiling Convert to Long Fixed-Point MIPS Il
FLOOR.L.fmt Floating-point Floor Convert to Long Fixed-Point MIPS Il

10.5.3 Computational Instructions (Table 10-12)

Computational instructions perform arithmetic operations on floating-point values in the
FPU registers. These are two categories of computational instructions:

e 3-Operand Register-Type instructions, which perform floating-point addition,
subtraction multiplication, and division operations

e 2-Operand Register-Type instructions, which perform floating-point abusolute value,
move, negate, and square root operations.

Table 10-12. FPU Instruction Set(Optional): Computational Instruction

Instruction Description Note
ADD.fmt Floating-point Add MIPS |
SUB.fmt Floating-point Subtract MIPS |
MUL.fmt Floating-point Multiply MIPS |
DIV.fmt Floating-point Divide MIPS |
ABS.fmt Floating-point Absolute Value MIPS |
MOV.fmt Floating-point Move MIPS |
NEG.fmt Floating-point Negate MIPS |
SQRT.fmt Floating-point Square root MIPS Il

10-14

X
TOSHIBA Chapter 10 Floating-Point Unit, CP1 mﬁﬁtcem

10.5.4 Compare and Branch Instructions (Table 10-13)

Compare instructions perform comparisons of the contents of registers and set a
conditional bit based on the results. Branch on FPU Condition instructions perform a
branch to the specified target if the specified coprocessor condition is met.

Table 10-13. FPU Instruction Set(Optional): Compare and Branch Instruction

Instruction Description Note
C.cond.fmt Floating-point Compare MIPS |
BC1T Branch on FPU True MIPS |
BC1F Branch on FPU False MIPS |

10-15

X
TOSHIBA Chapter 10 Floating-Point Unit, CP1 mﬁﬁtcem

10-16

X
TOSHIBA Chapter 11 Floating-Point Exception mﬁﬁ}?m

11. Floating-Point Exception (Option)

This chapter describes FPU floating-point exceptions, including FPU exception types,
exception trap processing, exception flags, saving and restoring state when handling an
exception, and trap handlers for IEEE Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handle either the operands or
the results of a floating-point operation in its normal way. The FPU responds by
generating an exception to initiate a software trap or by setting a status flag.

111

X
TOSHIBA Chapter 11 Floating-Point Exception mﬁﬁtcem

11.1 Introduction

This chapter describes floating-point exceptions, including FPU exception type, exception
trap processing, exception flags, saving and restoring state when handling an exception,
and trap handlers for IEEE Standard 754 exceptions.

11.2 Exception Types

The FP Control/Status register described in Chapter 10 contains an Enable bit for each
exception type; exception Enable bits determine whether an exception will cause the FPU
to initiate a trap or set a status flag.

« If a trap is taken, the FPU remains in the state found at the beginning of the
operation and a software exception handling routine executes.

« If no trap is taken, an appropriate value is written into the FPU destination register
and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:
e Inexact (I)

* Underflow (U)

e Overflow (O)

* Division by Zero (2)

¢ Invalid Operation (V)

Cause bits, Enables, and Flag bits (status flags) are used.

The FPU adds a sixth exception type, Unimplemented Operation (E). This exception
indicates the use of a software implementation. The Unimplemented Operation exception
has no Enable or Flag bit; whenever this exception occurs, an unimplemented exception
trap is taken.

Figure 11-1 shows the Control/Status register bits that support exceptions.

Bit # 17 16 15 14 13 12
| E | \ | Z | (@) | U | [| Cause Bits
I I I I I
Bit # 11 10 9 8 7
| \ | Z | (@) | U | [| Enable Bits
I I I I I
Bit # 6 5 4 3 2
| \ | Z | (@) | U | [| Flag Bits
I I I I I I
Unimplemented Invalid Division by Overflow Underflow Inexact

Zero

Figure 11-1. Control/Status Register Exception/Flag/Trap/Enable Bits

11-2

X
TOSHIBA Chapter 11 Floating-Point Exception mﬁﬁ}?m

11.3 Exception Trap Processing

When a floating-point exception trap is taken, the Cause register indicates the floating-
point coprocessor is the cause of the exception trap.

The Floating-Point Exception (FPE) code is used, and the Cause bits of the floating-point
Control/Status register indicate the reason for the floating-point exception. These bits are,
in effect, an extension of the system coprocessor Cause register.

11.4 Flags

A Flag bit is provided for each IEEE exception. This Flag bit is set to a 1 on the assertion
of its corresponding exception, without corresponding exception trap signaled.

The Flag bit is reset by writing a new value into the Status register; flags can be saved
and restored by software either individually or as a group.

When no exception trap is signaled, floating-point coprocessor takes a default action,
providing a substitute value for the exception-causing result of the floating-point
operation. The particular default action taken depends upon the type of exception. Table
11-1 lists the default action taken by the FPU for each of the IEEE exceptions.

Table 11-1. Default FPU Exception Actions

Field Description Rounding Default action
Mode
| Inexact exception Any Supply a rounded result
RN Modify underflow values to 0 with the sign of the intermediate result
RZ Modify underflow values to 0 with the sign of the intermediate result
U Underflow exception | RP Modify positiye und?rflows to the format's smallest positive finite
number; modify negative underflows to 0.
RM Modify negative underflows to the format's smallest negative finite
number; modify positive underflows to 0.
RN Modify overflow values to oo with the sign of the intermediate result
R7 Modify overflow values to the format'’s largest finite number with the sign
of the intermediate result
(0] Overflow exception RP Modify negative overflows to the format's most negative finite number;
modify positive overflows to +oo
RM Modify positive overflows to the format’s largest finite humber; modify
negative overflows to —co
Z Division by zero Any Supply a properly signed oo
Supply 23! —1 result (Word Fixed-Point);
\ Invalid operation Any Supply 2%7 —1 result (Long Fixed-Point);
Otherwise supply a quiet Not a Number

11-3

X
TOSHIBA Chapter 11 Floating-Point Exception mﬁﬁtc&m

The FPU detects the eight exception causes internally. When the FPU encounters one of
these unusual situations, it causes either an IEEE exception or an Unimplemented
Operation exception (E).

Table 11-2 lists the exception-causing situations and contrasts the behavior of the FPU
with the requirements of the IEEE Standard 754.

Table 11-2. FPU Exception-Causing Conditions

IEEE
FPA Internal Trap Trap
Standard . Notes
Result Enable Disable
754
Inexact result | [[Loss of accuracy
Exponent overflow 0, 1Y 0,1 0,1 Normalized exponent > Emax
Division by zero Z Z Z Zero is (exponent=Emin —1, mantissa=0)
Overflow on convert 2 2 .
\% A\ V Source out of integer range, o, NaN
to Integer
Signaling NaN
g g \Y \Y \Y
source
Invalid operation V V V 0/0, etc.
Exponent underflow U E Ul &3 Normalized exponent < Eqmin
Denormalized or Denormalized is (exponent=Eyi, —1 and
None E E .
QNaN mantissa <> 0)

(*1) The IEEE Standard 754 specifies an inexact exception on overflow only if the overflow trap is
disabled.

(*2) Some implementations such as TX49 trap as (E) and SW support is requred. In TX79

implementation there is NO SW support required.

(*3) Exponent underflow sets the U and | Cause bits if both the U and | Enable bits are not set and the
FS bit is set; otherwise exponent underflow sets the E Cause bhit.

11-4

X
TOSHIBA Chapter 11 Floating-Point Exception mﬁﬁ}?m

11.5 FPU Exceptions

The following sections describe the conditions that cause the FPU to generate each of its
exceptions, and details the FPU response to each exception-causing condition.

Inexact Exception (1)

The FPU generates the Inexact exception if one of the following occurs:
« the rounded result of an operation is not exact, or

e the rounded result of an operation overflows, or

e the rounded result of an operation underflows and both the Underflow and Inexact
Enable bits are not set and the FS bit is set.

Trap Enabled Results: If Inexact exception traps are enabled, the result register is not
modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to the destination
register if no other software trap occurs.

11-5

X
TOSHIBA Chapter 11 Floating-Point Exception mﬁﬁ}?m

Invalid Operation Exception (V)
Floating-Point format operation

The Invalid Operation exception is signaled if one or both of the operands are invalid for
an implemented operation. When the exception occurs without a trap, the MIPS ISA
defines the result as a quiet Not a Number (QNaN) for Floating-Point format. The
invalid operations are:

« Addition or subtraction: magnitude subtraction of infinities, such as: (+ o) + (—) or
(=0) = (=)
e Multiplication: 0 times o, with any signs

e Division: 0/0, or /0, with any signs

e Comparison of predicates involving ‘<’ or >' without '?’, when the operands are
unordered

* Any arithmetic operation, when one or both operands is a signaling NaN. A move
(MOV) operation is not considered to be an arithmetic operation, but absolute value
(ABS) and negate (NEG) are considered to be arithmetic operations.

e Comparison or Convertion From Floating-point Format on a signaling NaN.

e Square root: Jx , where x is less than zero.

Software can simulate the Invalid Operation exception for other operations that are
invalid for the given source operands. Examples of these operations include IEEE
Standard 754-specified functions implemented in software, such as Remainder: x REM
v, where yis 0 or x is infinite; conversion of a floating-point number to a decimal format
whose value causes an overflow, is infinity, or is NaN; and transcendental functions,
such as In (-5) or cos™ (3). Refer to Appendix D for examples or for routines to handle
these cases.

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: A quiet NaN is delivered to the destination register if no other
software trap occurs.

Conversion to Integer format

The Invalid Operation exception is also raised when the source operand is an Infinity
() or NaN, or the correctly rounded integer result is outside of the representable range.

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disable Results: The result value 231 -1 (for Word Fixed-Point) or 263 -1 (for
Long Fixed-Point) is delivered to the destination register if no
other software trap occurs.

0'<, '>"and *?" are the notation in IEEE std 754.
‘2’ means ‘unordered.” See Compare instruction in Appendix D.

11-6

X
TOSHIBA Chapter 11 Floating-Point Exception mﬁﬁ}?m

Division-by-Zero Exception (Z)

The Division-by-Zero exception is signaled on an implemented divide operation if the
divisor is zero and the dividend is a finite nonzero number. Software can simulate this
exception for other operations that produce a signed infinity, such as In (0), sec (172), csc
(0), or Ot

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly signed infinity.
Overflow Exception (O)

The Overflow exception is signaled when the magnitude of the rounded floating-point
result, with an unbounded exponent range, is larger than the largest finite number of the
destination format. (This exception also signals an Inexact exception.)

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: The result, when no trap occurs, is determined by the rounding
mode and the sign of the intermediate result (see Table 11-3).

Table 11-3. Values of Overflow Results

Denormalized Flushed result Rounding Mode
Result RN RZ RP RM

Positive +00 +Emax +00 +Emax

Negative —00 —Emax —-Emax —00

Underflow Exception (U)
Two related events contribute to the Underflow exception:

» creation of a tiny nonzero result between +2Emin which can cause some later exception
because it is so tiny

e extraordinary loss of accuracy during the approximation of such tiny numbers by
denormalized numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but requires they be
detected the same way for all operations.

Tininess can be detected by one of the following methods:

« after rounding (when a nonzero result, computed as though the exponent range were
unbounded, would lie strictly between +2Emin)

e before rounding (when a nonzero result, computed as though the exponent range and
the precision were unbounded, would lie strictly between £2Emin),

The MIPS architecture requires that tininess be detected after rounding.

Loss of accuracy can be detected by one of the following methods:

11-7

X
TOSHIBA Chapter 11 Floating-Point Exception mﬁﬁ}?m

e denormalization loss (when the delivered result differs from what would have been
computed if the exponent range were unbounded)

e inexact result (when the delivered result differs from what would have been computed
if the exponent range and precision were both unbounded).

The MIPS architecture requires that loss of accuracy be detected as an inexact result.

Trap Enabled Results: If Underflow or Inexact traps are enabled, or if the FS bit is not
set, then an Unimplemented exception (E) is generated, and the
result register is not modified and the source registers are
preserved.

Trap Disabled Results: If Underflow and Inexact traps are not enabled and the FS bit is
set, the result is determined by the rounding mode and the sign
of the intermediate result (See Table 10-4).

Unimplemented Instruction Exception (E)

Any attempt to execute an instruction with an operation code or format code that has been
reserved for future definition sets the Unimplemented bit in the Cause field in the FPU
Control/Status register and traps. The operand and destination registers remain
undisturbed and the instruction is emulated in software. Any of the IEEE Standard 754
exceptions can arise from the emulated operation, and these exceptions are simulated.

The Unimplemented Instruction exception can also be signaled when unusual operands or
result conditions are detected that the implemented hardware cannot handle properly.
These include:

« Denormalized operand, except for Compare instruction
e Quiet Not a Number operand, except for Compare instruction

« Denormalized result or Underflow, when either Underflow or Inexact Enable bit is set
or the FS bit is not set.

e Reserved opcodes
¢ Unimplemented formats
e Operations which are invalid for their format (for instance, CVT.S.S)

NOTE: Denormalized and NaN operands are only trapped if the instruction is a convert or a
computational operation. A move opration does not trap if their operands are either
denormalized or NaNs.

The use of this exception for such conditions is optional; most of these conditions are
newly developed and are not expected to be widely used in early implementations.
Loopholes are provided in the architecture so that these conditions can be implemented
with assistance provided by software, maintaining full compatibility with the IEEE
Standard 754.

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: This trap cannot be disabled.

11-8

X
TOSHIBA Chapter 11 Floating-Point Exception mﬁﬁ}?m

11.6 Saving and Restoring State

Sixteen doubleword” coprocessor load or store operations save or restore the coprocessor
floating-point register state in memory. The remainder of control and status information
can be saved or restored through CFC1/CTC1 instructions, and saving and restoring the
processor registers. Normally, the Control/Status register is saved first and restored last.

When state is restored, state information in the Control/Status register indicates the
exceptions that are pending. Writing a zero value to the Cause field of Control/Status
register clears all pending exceptions, permitting normal processing to restart after the
floating-point register state is restored.

11.7 Trap Handlers for IEEE Standard 754 Exceptions

The IEEE Standard 754 strongly recommends that users be allowed to specify a trap
handler for any of the five standard exceptions so that a software subroutine can return a
value to be used in stead of the exceptional operation’s result; the trap handler can either
compute or specify a substitute result to be placed in the destination register of the
operation.

By retrieving an instruction using the processor Exception Program Counter (EPC)
register, the trap handler determines:

e exceptions occurred during the operation
e the operation being performed
* the destination format

On Overflow or Underflow exceptions (except for conversions), and on Inexact exceptions,
the trap handler gains access to the correctly rounded result by decoding source register
field of the instruction code and simulating the operation in software.

On Overflow or Underflow exceptions caused by a floating-point conversion, on Invalid
Operation and on Division-by-Zero exceptions, the trap handler gains access to the
operand values by decoding the source register field of the instruction code.

The IEEE Standard 754 recommends that, if enabled, the overflow and underflow traps
take precedence over a separate inexact trap. This prioritization is accomplished in
software; hardware sets the bits for both the Inexact exception and the Overflow or
Underflow exception.

32 doublewords if the FR bit is set to 1.

11-9

X
TOSHIBA Chapter 11 Floating-Point Exception mﬁﬁ}?m

11-10

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

12. PC Trace

This chapter describes the trace functions present on the C790.

The C790 supports real-time PC tracing. Pipeline status, target addresses of indirect
jumps, and exception vectors are made available on special signals. The executed
instruction sequence can be restored from signals and the source program.

The C790 also supports hardware breakpoints. The breakpoint facility is described in
Chapter 13.

12-1

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

12.1 Real-Time PC Tracing

Trace information and non-sequential Program Counters are made available on special
signal lines of the CPU.

The following trace information is made available:

« Instruction being executed in pipeline 0

« Instruction being executed in pipeline 1

e Current execution status (Normal (sequential), Branch Taken, Jump Target,
Exception Target)

For Indirect jumps, the target address is also made available. For exception vectors, a code
for the exception vector address is made available.

12.1.1 Classification of Branch and Jump Instructions

In this chapter, branches and jumps are classified into three categories which are direct
jump, indirect jump and branch in order to explains the function of PC trace.
The classification is show in Table 12-1.

Table 12-1. Classification of Branch and Jump Instruction

Class Instruction
Jump Direct or Indirect Jump
Direct Jump J or JAL Instruction
Indirect Jump JR, JALR or ERET Instruction
Branch Any of conditional branch Instruction

12-2

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

12.1.2 PC Trace Signals

All PC trace signals operate at half the C790 CPU clock frequency using the BUSCLK
clock signal. Because of the half frequency operation there are pairs of signals which
indicate the status of execution within the CPU pipelines. Phase A signals show the status
corresponding to the even CPU clock cycle and Phase B signals show the status
corresponding to the odd CPU clock cycle.

As can be seen from the following figure the execution status of the CPU pipeline during
time O (all time references are in relation to the CPU clock) is put on the phase A signals
at the next rising edge of BUSCLK during time 2. Similarly the execution status of the
CPU pipeline during time 1 is put on the phase B signals.

Time 0 1 2 3 4 5 6 7 8 9 10

pase | A B | Al | A|s a8 A8 |A]

suse | [[[| [| | | |

Signals. Ao X 2 X ¢ X & X
Signats. Xt X 3 X 5 X 7 X

The following signals are made available for real-time PC tracing.

« POEXEA* Phase A Pipeline 0 Execution Status Output
p p

« P1EXEA* Phase A Pipeline 1 Execution Status Output
p p

e JMPA* (Phase A Jump) Output

« POEXEB* Phase B Pipeline 0 Execution Status Output
p p

« P1EXEB* Phase B Pipeline 1 Execution Status Output
p p

« JMPB* (Phase B Jump) Output

e TPCE* Target PC Enable Output
g p

* TPC[3:0] (Target PC Bus) Output

(1) POEXEA* (Phase A Pipeline 0 Execution Status) Output

POEXEA indicates whether an instruction has completed execution without generating an
exception (retired) via Pipeline 0 during phase A.

0: An instruction was retired.
1: No instruction was retired.

12-3

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

(2) PLEXEA* (Phase A Pipeline 1 Execution Status) Output

P1EXEA indicates whether an instruction retired via Pipeline 1 during phase A. Note if
this signal is asserted at the same time as POEXEA* then two instructions were retired
simultaneously during phase A via pipelines 0 and 1 but there is no indication as to which
specific instruction was retired via which pipeline.

0: An instruction was retired.
1: No instruction was retired.

(3) IMPA* (Jump Phase A) Output

A jump was retired during phase A or a conditional branch instruction was retired and the
branch was taken during phase A. Note that exceptions do not assert this signal.

0: Jump or conditional branch instruction was retired.
1: No Jump or conditional branch instruction was retired.

(4) POEXEB* (Phase B Pipeline 0 Execution Status) Output

POEXEB indicates whether an instruction retired via Pipeline 0 during phase B.

0: An instruction was retired.
1: No instruction was retired.

(5) PLAEXEB* (Phase B Pipeline 1 Execution Status) Output

P1EXEB indicates whether an instruction retired via Pipeline 1 during phase B. Note if
this signal is asserted at the same time as POEXEB* then two instructions were retired
simultaneously during phase B via pipelines 0 and 1 but there is no indication as to which
specific instruction was retired via which pipeline.

0: An instruction was retired.
1: No instruction was retired.

(6) IMPB* (Jump Phase B) Output

A jump was retired during phase B or a conditional branch instruction was retired and the
branch was taken during phase B. Note that exceptions do not assert this signal.

0: Jump or conditional branch instruction was retired.
1: No Jump or conditional branch instruction was retired.

12-4

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

(7) TPCE* (Target PC Enable) Output

When this signal is asserted the TPC bus indicates the type of target PC that will be made
available.

0: TPC bus indicates type of target PC.
1: TPC bus has either the target PC or the exception vector address code
or has no information.

The normal sequence of operation for the TPCE* and the TPC[3:0] signals is as follows:
First TPCE* is asserted and simultaneously TPC[3:0] contains information about the type
of the target PC (non-sequential PC). Next TPCE* is deasserted and either the target PC
for indirect jumps is made available on the TPC[3:0] bus or for exceptions an exception
vector address code is made available on the TPC[3:0] bus.

(8) TPCI[3:0] (Target PC) Output

TPC[3:0] either indicates the type of the target PC address or the target address of
indirect jump instructions or exception vector address codes.

When TPCE?* is asserted the type of the target PC address is made available on
TPC[3:0]. Each bit of TPC[3:0] indicates a different type and multiple bits can be
active at the same time.

TPC[0]: Jump Target during Phase A
When this signal is asserted it indicates that the target instruction of an
Indirect Jump instruction (includes JR, JALR and ERET) is retired during

Phase A. The target address is made available on TPC[3:0] in the next cycle if
neither TPC[2] or TPC[3] are asserted simultaneously with this signal.

TPC[1]: Exception Target during Phase A

When this signal is asserted it indicates that the first instruction of an
exception handler is retired during Phase A. The exception vector address is
made available on TPC[3:0] in the next cycle if neither TPC[2] nor TPC[3] are
asserted simultaneously with this signal.

TPC[2]: Jump Target during Phase B
When this signal is asserted it indicates that the target instruction of an

Indirect Jump instruction is retired during Phase B. The target address is
made available on TPC[3:0] in the next cycle.

TPC[3]: Exception Target during Phase B

When this signal is asserted it indicates that the first instruction of an
exception handler is retired during Phase B. The exception vector address is
made available on TPC[3:0] in the next cycle.

12-5

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

TPC[3:0] when TPCE* j r

When TPCE?* is not asserted TPC[3:0] can be carrying the following three type of
information:

1. There is no meaningful information on TPC. This happens most of the time
when the program is executing sequentially.

2. The target address is made available because in the previous cycle TPCE*
was asserted and TPC[0] or TPCJ[2] were equal to 0. The target address starts
with the least significant four bits of the target instruction address (bits[5:2]).

3. An exception vector address code is made available because in the previous
cycle TPCE* was asserted and TPC[1] or TPC[3] were equal to 0. The
exception vector address code are shown in Table 12-2.

Table 12-2. Exception Vector Address Codes

Exception STATUS.BEV STATUS.DEV STATUS.EXL Vector Code
Address (TPC[3:0])
Reset, NMI X X X 0xBFCO 0000 8 (1000)
TLB Miss 1 X 0 0xBFCO0 0200 12 (1100)
TLB Miss 0 X 0 0x8000 0000 0 (0000)
TLB Miss 1 X 1 0xBFCO 0380 15 (1111)
TLB Miss 0 X 1 0x8000 0180 3 (0011)
Debug & SIO X 1 X 0xBFCO 0300 14 (1110)
Debug & SIO X 0 X 0x8000 0100 2 (0010)
Performance X 1 X 0xBFCO0 0280 13 (1101)
Counter
Performance X 0 X 0x8000 0080 1 (0001)
Counter
Interrupt 1 X X 0xBFCO 0400 9 (1001)
Interrupt 0 X X 0x8000 0200 4 (0100)
Common 1 X X 0xBFCO 0380 15 (1111)
Common 0 X X 0x8000 0180 3 (0011)

12-6

TOSHIBA

Chapter 12 PC Trace m

12.1.3 Priority of Target Addresses

The target address for an indirect jump instruction or an exception vector address code is
made available on TPC[3:0]. For an indirect jump instruction it takes multiple cycles (8
BUSCLK cycles or 16 CPU clock cycles) for the complete target address to be made
available on the TPCJ[3:0] bus. As such multiple conditions can occur simultaneously and
there are certain priorities associated with putting out the target address. The rules

governing what is made available on the TPC[3:0] bus are listed below:

1. If a new indirect jump instruction is retired while the target address PC for a
previous indirect instruction is still being put out on TPCJ[3:0], the new indirect
jump instruction’'s target PC will be signaled and start coming out on the

TPC[3:0] bus and the previous target PC output will be terminated.

2. If an exception is taken while the target address PC for a previous indirect
instruction is still being put out on TPC[3:0], the exception vector address code
will be signaled and start coming out on the TPC[3:0] bus and the previous

target PC output will be terminated

The rules are also described in the following flowchart.

h J

Suspend Outputting
Previous Target
Address Output

v

Exception

Previous Target

Address. Is Being Output

Currently ?

Output Exception
Target

Output Exception
Target

v

Resume Outputting
Previous Target
Address

New Indirect Jump
or Exception
Target Retired 2

Indirect Jump

Previous Target

address is Being Output

Currently ?

Yes

h J

Terminate Outputting
Current PC Output

Start Outputting
Target Address
of Jump

-l

Figure 12-1. Priority of Outputting Jump or Exception Target

12-7

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

12.1.4 Examples of PC Tracing

The following sections contains examples of program execution and the corresponding
waveforms of the PC trace signals. Note that when two instructions are retired
simultaneously, just for the sake of illustration, it is indicated which instruction is

executed in which pipeline. In reality, in this case, it is not known which instruction is
retired from which pipeline.

12-8

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

12.1.4.1 Sequential Execution

This is an example of sequential program execution. The program fragment is as follows:

mul

add

sub
lwrl
add

sub ,,rl
add

add

The PC trace signals for the program fragment are shown below:

Phase |A|B|A|B|A|B|A|B|

CPUCLK
BUSCLK | | | |

Pipe 0 |mu||sub|add| - | - |add|

Pipe 1 | | add | Iw | - | sub | add |
POEXEA* \ mul add / \
P1EXEA* \ W sub /_

POEXEB* sub add

JMPA*

_
. N
7 .
LZEAALANATATARARRARARARAARARARRRRARANNY

/
\
PrExER" \ e add
/
/

Figure 12-2. Waveform for Sequential Excecution

12-9

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

12.1.4.2 Conditional Branch

This is an example of program with conditional branch instructions. Both the branch
taken and not taken case is illustrated. The program fragment is as follows:

add

add

beq Lo # Not Taken
| w

add

beq L1 # Taken

add

L1: add
bne L2 # Taken
sl

L2 sub
sub

The PC trace signals for the program fragment are shown below:

Phase a8 |a|lBs]|als|a]s]|a]es|
CPUCLK
BUSCLK | | | | | |

Taken
Pipe 0 | add | add | add | - | - | add | bne | sub |
Pipe 1 | - | beq | Iw | - | beq | add | sli | sub |
Not Taken Taken

POEXEA* \ add add bne
P1EXEA* / \ W beq sll /_
POEXEB* \ ad / \ add sub /_
P1EXEB* \ beq / \ add sub /-
JMPA* / \ beq bne /_
IMPB* / _
TPCE* / _

JSCAANEINANALAERARRRRRRARRREARARAREARRRARRRRAANY

Figure 12-3. Waveform for Conditional Branch

12-10

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

12.1.4.3 Indirect Jump (Target in Phase A)

This is an example of program with an indirect jump instruction which is retired during
phase B. The program fragment is as follows:

add
add
jr L1
| w
L1 xor
add
ori
ori
sw
sl

sub
sub

The PC trace signals for the program fragment are shown below:
Phase | A |a]e|a]e]|ale]|a]s]

CPUCLK
suse [[L[L[[[1]

Target

o0 [ata [ata | - | - e o [@ [|

et [[|- e o [[|

7N w e [
N/ N A

IMPA* / _

\ ¥/ .

TPCE* / xor
EESEANNANLANNNNRRRRRARRRRRN NN G umixg]

TA[x:y] = Target address bit x to y

Figure 12-4. Waveform for Indirect Jump (Target in Phase A)

12-11

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

12.1.4.4 Indirect Jump (Target in Phase B)

This is an example of program with an indirect jump instruction which is retired during
phase A. The program fragment is as follows:

add
add
jr L1
| w
L1 xor
add
ori
ori
sw
sl

sub
sub

The PC trace signals for the program fragment are shown below:
Phase | A |a]e|a]e]|ale]|a]s]

CPUCLK
suse [[L[L[[[1]

P e | | = [- | - fei [[|

Pt | || o ek | o | sw [s |

POEXEA* \ add / sll

_ /T \ w [

/ __o w /)

P1EXEB* \ W xor ori sub /-

N N

/ N

TRCE* 7 vor _

2SS ANNANANARAANAR NNV T G G xjixgl
|<7 8 Bus Cycles

Figure 12-5. Waveform for Indirect Jump (Target in Phase B)

12-12

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

12.1.4.5 Indirect Jump (During Target PC Output)

This is an example of a program with two indirect jump instructions. While the target
address PC associated with the first indirect jump instruction is being put out the second
indirect jump instruction is retired. Thus the first target PC output is terminated and the
second target PC output is signaled and then made available. The program fragment is as
follows:

add
add
jr L1
lw

L1 Xor
add
jr L2
add
L2 SwW
sl
sub
sub

The PC trace signals for the program fragment are shown below:
phase | A | B | A | B | Aa|B|A]|B]|A]B]|A]B]

CPUCLK
euse || | L L1 L] | |

Target Target

Pipe 0 | add | add | - | - | xor | jr | - | - | sl | sub |

Pipe 1 | - | jr | Iw | - | add | add | - | - | sw | sub |

POEXEA* \ add xor sll
P1EXEA* / \ W add m
POEXEB* \ add i sub
P1EXEB* \ ir add sub

IMPA* / \

\ TN/ .

TPCE* / xor SwW

eei30 ANV 1210 X Tasa X 110 XTAIS2

Figure 12-6. Waveform for Indirect Jump (During Target PC Output)

12-13

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

12.1.4.6 Exception (Target in Phase B)

This is an example of a program which generates an exception. The target instruction
(first instruction of the exception handler) retires in phase B. The program fragment is
shown below. The label ExHnd identifies the first instruction of the exception handler.

add
add
add
Iw
teq # Generates exception

Bxthd: xor
add
sw
sl
sub
sub

The PC trace signals for the program fragment are shown below:
More stall cycles might be inserted.
phase | A |8 | a8 |Aa|e|alB]|Aa]6e]

CPUCLK
euse |] L] L[]

Exception

Target
Pipe 0 | add | add | - | - | - | xor | sli | sub |
Pipe 1 | - | add | Iw | - | - | add | sw | sub |
POEXEA* \ ad / sll

P1EXEA* Iw sw

/

\ add / \ xor sub
P1EXEB* \ add / \ add sub

/

/

POEXEB*

JMPA*

JMPB*

T Y ™Y

TPCE* / xor

EUANRARRARARRRRRARRRRRRARN Y S =

E.Code = Exception Vector Code

Figure 12-7. Waveform for Exception (Target in Phase B)

12-14

TOSHIBA

X
Chapter 12 PC Trace mﬁﬁtcem

12.1.4.7 Exception (During Target PC Output)

This is an example of a program which generates an exception while a target PC from an
earlier indirect jump instruction is being made available. The target PC output is
terminated and the exception vector address code is signaled and then made available.
The target instruction (first instruction of the exception handler) retires in phase B. The
program fragment is shown below. The label ExHnd identifies the first instruction of the
exception handler.

ExHnd:

add
add
add
| w
teq
xor
add
S
sl
sub
sub

Generates exception

The PC trace signals for the program fragment are shown below:

Phase

Pipe 0

Pipe 1

POEXEA*

P1EXEA*

More stall cycles might be inserted.
f————»]

[alelafelalefale]afe]
CPUCLK
BUSCLK

|add|

al

al

dd

dd

|W|

Exception
Target
| xor | sl | sub |

|add|sw|sub|

_ | _
_ | _
add /

POEXEB*

P1EXEB*

JMPA*

JMPB*

TPCE*

add / \ xor sub

add / \ add sub

sli

Iw sw

|
|
\
/
\
\
/
/

T Y ™Y

/

TPC[S:O]XXX Taiz0 X TA17:14 X TA2118 X o1l X ECode X:

TAxx:yy = Target Address bit xx to yy
E.Code = Exception Vector Code

Figure 12-8. Waveform for Exception (During Target PC Output)

12-15

TOSHIBA

X
Chapter 12 PC Trace mﬁﬁtcem

12.1.4.8 Exception Generated by Branch or Jump Instruction

This is an example of a program in which an indirect jump instruction generates an
exception. As such the program jumps to the exception handler and the only thing
indicated is the exception vector address code and not the jump. The target instruction
(first instruction of the exception handler) retires in phase B. The program fragment is
shown below. The label ExHnd identifies the first instruction of the exception handler.

BxHd:

add
add
add
lw
jr
nop
Xor
add
sw
sl
sub
sub

Generates an exception
Branch del ay sl ot

The PC trace signals for the program fragment are shown below:

Phase

More stall cycles might be inserted.

[adefalefalefalefals]

CPUCLK

BUSCLK J | |

Pipe 0
Pipe 1

POEXEA*

P1EXEA*

[I S I

Exception
Target
| add | add | - | - | - xor | sli | sub |
| - |add | Iw | - | - |add | sw |sub |
\ add / sll
Iw sw

POEXEB*

P1EXEB*

JMPA*

JMPB*

TPCE*

add / \ xor sub

add / \ add sub

~ N

T Y ™Y

/

ECTANRAARARARRRARARRARARAR MY S =

E.Code = Exception Vector Code

Figure 12-9. Waveform for Exception Generated by Branch or Jump Instruction

12-16

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

12.1.4.9 Exception Generated by Branch Delay Slot Instruction

This is an example of a program in which the branch delay slot instruction generates an
exception. As such the program jumps to the exception handler and the only thing
indicated is the exception vector address code and not the jump. The target instruction
(first instruction of the exception handler) retires in phase B. The program fragment is
shown below. The label ExHnd identifies the first instruction of the exception handler.

add

add

add

| w

jr

| w # Generates an exception
Bxthd: xor

add

sw

sl

sub
sub

The PC trace signals for the program fragment are shown below:

More stall cycles might be inserted.
Phase | a|le|a]e|a|e]a]e|a]s]
CPUCLK
IS R S N I S R

Exception

Target
Pipe 0 | add | add | ir | - | - | xor | sl | sub |
Pipe 1 | - | add | Iw | - | - | add | sw | sub |
POEXEA* \ add i sll
P1EXEA* / Iw sw
POEXEB* \ add / \ xor sub /
P1EXEB* \ add / \ add sub /
IMPA* / \ ir / \
IJMPB* / \
TPCE* / xor

ESEPANRARRARAARRARARRRNARAR MY S S

E.Code = Exception Vector Code

Figure 12-10. Waveform for Exception Generated by Branch Delay Slot Instruction

12-17

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

12.1.4.10 Exception Generated by Target Instruction

This is an example of a program in which the target instruction of an indirect jump
generates an exception. As such the program jumps to the exception handler and the only
thing indicated is the exception vector address code and not the jump. The target
instruction (first instruction of the exception handler) retires in phase B. The program
fragment is shown below. The label ExHnd identifies the first instruction of the exception
handler.

add
add
add
| w
jr L1
nop

L1 Iw # Generates an exception
and

BxHhd: xor
add
S
sl
sub
sub

The PC trace signals for the program fragment are shown below:
More stall cycles might be inserted.

jt———»|
pase | a | e | a e |a|Ee |a]Ee Al |a]s|

CPUCLK
BUSCLK [I S R

oeo[aao [aas | b [ron | - | < | - [| a | |
oer | e | [|| [] e | |

POEXEA" \ | add P/ i
P1EXEA* / \ Iw / \ sw {
poExes® \ e oo S\ o A
PlEXER! \ e/ \ add s/~
IMPA* 7 N i/ \

7 T
TPCE* 7 xor

EEATRARAARRRARRRARARMARRARRARRR NNV S =

Figure 12-11. Waveform for Exception Generated by Target Instruction

12-18

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

12.1.4.11 Back to Back Exceptions (Case I)

This is an example of a program in which two back to back exceptions are generated. The
program jumps to the first exception handler but then immediately jumps to the second
exception handler. The target instruction (first instruction of the second exception
handler) retires in phase A. The exception vector address code for the first handler is
never made available. The program fragment is shown below. The label ExHnd1 identifies
the first instruction of the first exception handler and the label ExHnd2 identifies the first
instruction of the second exception handler.

add

add # Generates the first exception
Exthdl: xor # Generates the second exception

xor
Bx+Hhd2: sw

sl

sub

sub

The PC trace signals for the program fragment are shown below:
More stall cycles might be inserted.

| <t oy |

|- |

alefadefadefalefafe]ales]

v [LT L L L L L L L
s — 1 LT LT LT 1 |

Phase

Exception

Target
Pipe 0 lada | - | - | - | - | - -] -] st [sub]
N I A B e B B B BV TN
POEXEA* \ ad / sll
P1EXEA* / \ SwW f
POEXEB* / sub
P1EXEB* / sub
IJMPA* / \
JMPB* / \

TPCE* / \ sw /7
S ANLAAALRRRRARRRRRRRARARRRRRARRRRRRRRRN RNV S

E.Code = Exception Vector Code

Figure 12-12. Waveform for Back to Back Exceptions (Case I)

12-19

X
TOSHIBA Chapter 12 PC Trace mﬁﬁfém

12.1.4.12 Back to Back Exceptions (Case II)

This is an example of a program in which two (all most) back to back exceptions are
generated. The program jumps to the first exception handler and then generates an
exception when executing the second instruction of the exception handler. It then jumps to
the second exception handler. The target instruction (first instruction of the first exception
handler) retires in phase A. As compared to the case discussed above the exception vector
address code for the both the handlers are made available. The program fragment is
shown below. The label ExHndl identifies the first instruction of the first exception
handler and the label ExHnd2 identifies the first instruction of the second exception

handler.

add

add # Generates the first exception
Behdl: xor

Xor # Generates the second exception
Bx+Hhd2: sw

sl

sub

sub

The PC trace signals for the program fragment are shown below:

More stall cycles might be inserted.

| -t
™=

»l
>
alelalelale]ale|ale]afe]

eoe [LTI L L L Lo
oose— 1 LT LT LT 1T 1|

Phase

Exception Exception

Target Target
Pipe 0 |add| - | - | - |x0r | - | - | - | sll |sub|
T e e I O A I B R I T
POEXEA* \ add xor sll
P1EXEA* / \ SW f
POEXEB* / sub
P1EXEB* / sub
IJMPA* /
IJMPB* /

_

_
TPCE" 7 w T
el A NNVAANAMANANNNNNNNNNN or X Ecode X 1101 X Ecode

E.Code = Exception Vector Code

Figure 12-13. Waveform for Back to Back Exceptions (Case II)

12-20

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁ}?m

13. Hardware Breakpoint

This chapter describes hardware breakpoint functions for debugging present on the C790.

13-1

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁ}?m

13.1 Hardware Breakpoint

C790 provides hardware breakpoint mechanism for debugging purpose. (In this section,
hardware breakpoint is sometimes referred to as “breakpoint”.) This function allows users
to set a instruction breakpoint and a data address/value breakpoint with signaling the
breakpoint event occurrence to external probe. The following summarizes the features of
the breakpoint function.

« Provides both instruction and data breakpointing in virtual address.
¢ Instruction address breakpoint with address masking.

« Data breakpoint with masking. Data breakpoint can be set by the following
events:

Address with masking
Value with masking
Read/write
« Independent exception event control for instruction and data.
« Individual event control by processor operating mode/exception level.
« Provides a trigger signal to external probes synchronized with the breakpointing
event.

Hardware breakpointing is implemented as a part of Coprocessor 0. Configuring the
breakpoint is done by setting 7 Breakpoint registers by special MTCO/MFCO instructions.
Figure 13-1 shows the basic structure of the breakpoint hardware.

Breakpoint can generate breakpoint exception which is categorized in Level2 exception,
and has a dedicated exception vector. (See 5. Exception) This exception is only masked in
Level2 mode, and exception generation itself can be controlled by the Breakpoint Control
Register mentioned in the following section. Note that some of breakpoint exceptions are
imprecise, for instance, setting value breakpoint for load instruction is basically imprecise
because the load instruction may retire from the pipeline before actual acquisition of
memory contents. The following summarizes imprecise cases:

e All data value breakpoint on load instruction
e Data value breakpoint on SWC1 instruction

13.1.1 Hardware Breakpoint signal

To signal a breakpoint occurrence, the C790 activates a signal called TRIG, whenever a
trigger condition is met.

e TRIG (Trigger Output) Output

This signal is asserted for two BUSCLK cycles when a trigger condition is met.

13-2

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁ}?m

Address / Value Dlﬁg

Register DVB

fetch PC
load/store address
load/store value

) IABM
Mask Register DABM

DVBM

Qs =]

Enable Zilt%?r?;lt?)robe
Breakpoint Control BPC ctrl. (TRIG*)
I A
h J)
- | Enable Exception Pipeline Control
Breakpoint -1 crl. (Exception Control)

Event

\

Figure 13-1. Overall Structure of Hardware Breakpoint

13.2 Breakpoint Registers

Hardware breakpoint is comprised of 3 pairs of breakpoint registers and one control
register listed below. Each of breakpoint register pair includes one breakpoint value
register and one breakpoint mask register.

* Breakpoint Control Register (BPC)
¢ Instruction Address Breakpoint Registers
Instruction Address Breakpoint Register (1AB)
Instruction Address Breakpoint Mask Register (IABM)
« Data Address Breakpoint Registers
Data Address Breakpoint Register (DAB)
Data Address Breakpoint Mask Register (DABM)
« Data Value Breakpoint Registers
Data Value Breakpoint Register (DVB)
Data Value Breakpoint Mask Register (DVBM)

13-3

TOSHIBA

X
Chapter 13 Hardware Breakpoint mﬁﬁtcem

All 7 registers are 32-bit read/write and assigned to CoprocessorO register 24. Therefore,
C790 provides extended MTCO instructions for accessing these registers and it is
necessary to use these instructions to access these registers instead of the conventional
MTCO/MFCO instructions. Table 13-1 and Table 13-2 summarizes the instructions for
accessing the registers.

Table 13-1. Set a new value into breakpoint registers

Mnemonic Operation
MTBPC Move to Breakpoint Control Register
MTIAB Move to Instruction Address Breakpoint Register
MTIABM Move to Instruction Address Breakpoint Mask Register
MTDAB Move to Data Address Breakpoint Register
MTDABM Move to Data Address Breakpoint Mask Register
MTDVB Move to Data Value Breakpoint Register
MTDVBM Move to Data Value Breakpoint Mask Register

Table 13-2. Get the value from breakpoint registers

Mnemonic Operation

MFBPC Move from Breakpoint Control Register

MFIAB Move from Instruction Address Breakpoint Register
MFIABM Move from Instruction Address Breakpoint Mask Register
MFDAB Move from Data Address Breakpoint Register

MFDABM Move from Data Address Breakpoint Mask Register
MFDVB Move from Data Value Breakpoint Register

MFDVBM Move from Data Value Breakpoint Mask Register

13.2.1 Breakpoint Control Register (BPC)

The BPC register contains enable bits and status bits for controling the breakpointing of
both instruction and data. This register consists of 5 parts of bit fields:

Breakpoint overall control (bit [31:28])
These bits controls the operation mode of the breakpointing.

Instruction breakpoint control (bit [26:23])
These bits specifies the processor mode that the instruction breakpoint is
enabled.

Data breakpoint control (bit[21:18])

These bits specifies the processor mode that the data breakpoint is enabled.
Signaling Control (bit[17:15])

These bits controls the occurrence of breakpoint exception / trigger generation
upon the breakpoint event.

Breakpoint Status (bit[2:0])
These bits indicates the type of breakpoint event. This part is used to identify
which breakpoint event occurred in the breakpoint exception handler.

13-4

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁtcem

The following shows the detailed bitmap of BPC register.

313029282726252423222120191817161514131211109 8 7 6 54 3 210

I |D|D|D Ll D|D|D|D|I|D|B D(D| I
A|RW|V|0|U|S|K|X[0O|U[S|K|X|T|T|E]O|0|0|0|0|0|0|0|0|0|0|0W|R|A
E|E|E|E E|E|E|E E|E|E|E|E|E|D B|B|B

Table 13-3 describes the BPC register fields.

Table 13-3. BPC Register Fields

) : i Initial
Field | Bits Description Type
P yp Value
IAE 31 Instruction Address Enable. This bit enables/disables instruction Read / 0
address breakpointing. Write
0: disable instruction address breakpointing
1: enable instruction address breakpointing
DRE 30 Data Read Enable. This bit enables data load address breakpointing. Read / 0
0: disable breakpointing on reads Write
1: enable breakpointing on reads
DWE 29 Data Write Enable. This bit enables data store address breakpointing. Read / 0
0: disable breakpointing on writes Write
1: enable breakpointing on writes
DVE 28 Data Value Enable. This bit is valid only when DRE and/or DWE are Read / Undefined
setto 1. When DVE is set to 1 data read breakpoints (DRE == 1) are Write
further qualified by the value of the data read, and data write
breakpoints (DWE == 1) are further qualified by the value of the data
written. Note that data value breakpoints for data reads are
imprecise. See section 13.1 (“Hardware Breakpoint”) for more details.
rsvd 27 Reserved - must be written as zeros by software. The processor Read 0
returns zeros in these bit positions when read.
IUE 26 Instruction break - User Enable. This bit enables instruction address Read / Undefined
breakpointing in (standard) user mode. This bit is only valid if IAE is Write
setto 1.
0: disable instruction address breakpointing in User mode
1: enable instruction address breakpointing in User mode
ISE 25 Instruction break - Supervisor Enable. This bit enables instruction Read / Undefined
address breakpointing in supervisor mode. This bit is only valid if IAE Write
is setto 1.
0: disable instruction address breakpointing in Supervisor mode
1: enable instruction address breakpointing in Supervisor mode
IKE 24 Instruction break - Kernel Enable. This bit enables instruction address Read / Undefined
breakpointing in non-exception kernel mode - i.e. when both Write
STATUS.EXL and STATUS.ERL are 0. This bit is only valid if IAE is
setto 1.
0: disable instruction address breakpointing in Kernel mode
1: enable instruction address breakpointing in Kernel mode
IXE 23 Instruction break - EXL mode Enable. This bit enables instruction Read / Undefined
address breakpointing in exception kernel mode - i.e. when Write
STATUS.EXL is 1 and STATUS.ERL is 0. This bit is only valid if IAE
is setto 1.
0: disable instruction address breakpointing in EXL mode
1: enable instruction address breakpointing in EXL mode
rsvd 22 Reserved - must be written as zeros by software. The processor Read 0
returns zeros in these bit positions when read.

13-5

>
: S|
TOSHIBA Chapter 13 Hardware Breakpoint mnﬁtcem
Field | Bits Description Type Initial
P yp Value

DUE 21 Data break - User Enable. This bit enables data breakpointing in User Read / Undefined
mode. This bit is only valid if DWE or DRE is set to 1. Write
0: disable data breakpointing in User mode
1: enable data breakpointing in User mode

DSE 20 Data break - Supervisor Enable. This bit enables data breakpointing in | Read/ Undefined
Supervisor mode. This bit is only valid if DWE or DRE is set to 1. Write
0: disable data breakpointing in Supervisor mode
1: enable data breakpointing in Supervisor mode

DKE 19 Data break - Kernel Enable. This bit enables data breakpointing in Read / Undefined
Kernel mode - i.e. when both STATUS.EXL and STATUS.ERL are 0. Write
This bit is only valid if DWE or DRE is set to 1.
0: disable data breakpointing in Kernel mode
1: enable data breakpointing in Kernel mode

DXE 18 Data break - EXL mode Enable. This bit enables data breakpointing in Read / Undefined
Exception Kernel mode - i.e. when STATUS.EXL is 1 and Write
STATUS.ERL is 0. This bit is only valid if at least one of DRE or DWE
are setto 1.
0: disable data breakpointing in EXL mode
1: enable data breakpointing in EXL mode

ITE 17 Instruction Trigger Enable. This bit enables the generation of the Read / Undefined
trigger signal when an instruction breakpoint occurs. Write
0: disable instruction breakpoint trigger
1: enable instruction breakpoint trigger

DTE 16 Data Trigger Enable. This bit enables the generation of the trigger Read / Undefined
signal when an data breakpoint occurs. Write
0: disable data breakpoint trigger
1: enable data breakpoint trigger

BED 15 Breakpoint Exception Disable. This bit disables the entry into the Read / Undefined
debug exception handler. Note that the setting of this bit does not Write
affect trigger signal generation.
0: enable entry into debug exception handler
1: disable entry into debug exception handler

rsvd 14 - 3 | Reserved - must be written as zeros by software. The processor Read 0
returns zeros in these bit positions when read.

DWB 2 Data Write Breakpoint. This status bit indicates whether a data Read / Undefined
breakpoint has occurred on a write or not. Write
0: no data breakpoint has occurred on a write
1: data breakpoint has occurred on a write

DRB 1 Data Read Breakpoint. This status bit indicates whether a data Read / Undefined
breakpoint has occurred on a read or not. Write
0: no data breakpoint has occurred on a read
1: data breakpoint has occurred on a read

IAB 0 Instruction Address Breakpoint. This status bit indicates whether an Read / Undefined
instruction address breakpoint has occurred or not. Write
0: no instruction address breakpoint has occurred on a read
1: instruction address breakpoint has occurred on a read

13-6

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁ}?m

13.2.2 Instruction Address Breakpoint Register (IAB) / Instruction
Address Breakpoint Mask Register (IABM)

31 210

IAB 0

Figure 13-2. Instruction Address Breakpoint Register

31 210

IABM 0

Figure 13-3. Instruction Address Breakpoint Mask Register

This register pair holds the instruction breakpointing address. Both the value in I1AB
register and the current fetch PC are masked by the value in IABM. If the values are
equal, condition for instruction address breakpoint becomes true. As fetch PC is always
word-aligned, the bit 0 and bit 1 of these registers are fixed to zeros.

13.2.3 Data Address Breakpoint Register (DAB) /
Data Address Breakpoint Mask Register (DABM)

This register pair holds the data breakpointing address. Both the value in DAB register
and the destination for load/store operation are masked by the value in DABM. If the
values are equal, condition for data address breakpoint becomes true. These registers are
32-bit wide readable/writable.

31 0

DAB

Figure 13-4. Data Address Breakpoint Register

31 0

DABM

Figure 13-5. Data Address Breakpoint Mask Register

13-7

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁ}?m

13.2.4 Data Value Breakpoint Register (DVB) /
Data Value Breakpoint Mask Register (DVBM)

This register pair holds the value for data value breakpointing. Both the value in DVB and
the lower 32 bits of load/store data are masked with the value in DVBM. If the values are
equal, condition for data value breakpoint becomes true. Note that enabling data value
breakpoint implies activating the data address breakpointing (setting either/both of
DRE/DWE bit in BPC), and therefore breakpoint event for data value only happens if both
condition for data address breakpoint and data value breakpoint becomes true.

Note that the comparison of data value is always performed in 32bit regardless of the
width of load/store operation: the store value comes from GPR is truncated to 32bit value
for comparison and the load value is appropriately signextended or merged with the
contents of GPR (unaligned cases) and then the least significant 32-bits are used for
comparison. For instance, most significant (64+32) bits/32-bits are truncated on data value
comparison for LQ/SQ/LD/SD instructions, while the value from memory is sign-extended
to comprise a 32bit value for LB/LH instructions.

13.3 Setting Breakpoint

The following sections mention the details of breakpoint controls with some sample codes.
As C790 is a pipelined superscalar processor, several restrictions are applied in setting
breakpoint registers. The following is the main topic that has to be taken care of:

31 0

DvB

Figure 13-6. Data Value Breakpoint Register

31 0

DVBM

Figure 13-7. Data Value Breakpoint Mask Register

e Upon chainging the configuration of breakpointing, it is very likely that 3 or
more registers must be updated. However, the change is performed in pipelined
manner as C790 is pipelined processor. This potentially has possibility to create
a hazardous area in generating exception unconsciously.

e C790 does NOT wait for the data arrival on load operation. The instruction itself
may retire from the pipeline before storing the data into the registers, and the
occurrence of breakpointing event delays from the instruction completion. This
not only make some data value breakpoints imprecise, but also temporally
masks an occurrence of breakpointing event as following case: a data load
instruction that should cause data value breakpoint exception results in cache
miss. But in the next cycle, other level2 exception such as SIO interrupt had
been detected and the processor entered level2 before the acquisition of the data.
Under this scenario, data value exception will be delayed until the processor
returns from Level2 mode.

13-8

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁ}?m

13.3.1 Sequence of Setting Breakpoint

In order to prevent spurious exception during reconfiguring the breakpoint, managing
breakpointing enable before and after the change is mandatory. One easy way is to change
the processor mode into Level2 to mask breakpoint exception unconditionally, but, this
has an side effect that the user segment becomes unmapped. Therefore, this section
mainly focuses on changing the configuration without changing the processor mode.

The following summarizes the sequence of changing breakpointing configuration.

. Synchronize the pipeline

. Disable the breakpoint exception that is going to be reconfigured
. Synchronize the pipeline

. Set appropriate data in Breakpoint register pairs

a b~ W N

. Set appropriate configuration into Breakpoint Control Register, including enabling
the break point exception.

6. Synchronize the pipeline

There are three synchronization points in the sequence: the first one is to ensure that
there is no pending breakpoint exception for consistency in the breakpoint exception
handler. The second one is right after disabling the breakpoint that is going to be
reconfigured. This separates the change in the control register from the change for other
breakpoint register so that programmer can safely change the breakpoint. The third
synchronization is after updating breakpoint control register. Since C790 issues the
instructions in in-ordered manner, changes for breakpoint register pair always precedes
the change in the control register. In this sense, there is no spurious exception without
this synchronization. However, in order to catch the breakpointing event right after
updating the control register, flushing the pipeline at this point is strongly recommended.
The first synchronized operation must be either of SYNC.P or SYNC.L operation
depending on the breakpoint that is going to be reconfigured. If it is instruction
breakpoint, SYNC.P is to be used and otherwise SYNC.L is to be used. For second and
third synchronization, SYNC.P is to be used.

The flow generating TRIG* and exception is shown in Figure 13-8, Figure 13-9, Figure
13-10. Figure 13-8 describes the flow hardware breakpoint encounts the breakpointing
event. Figure 13-9, and Figure 13-10 describe the flow how the exception and TRIG*
signal is asserted.

The following shows some simple sample codes for configuring breakpoint registers.
Several programming notes/issues are put in the comments.

13-9

TOSHIBA

X
Chapter 13 Hardware Breakpoint mﬁﬁtcem

Status.ERL

1 (Level2) No Breakpointing

Breakpoint Configuration
Event Check
Status.EXL In
Levell 1 (Levell)
Mode ?
Status.KSU
(2bits)

Supervisor (01b) Kernel (00b)

Processor
Mode ?

User (10b)
No No No
I/IDXE =7
Yes No Yes No Yes No Yes No
Breakpoint Breakpoint Breakpoint Breakpoint
Event Event Event Event

No
Breakpoint
Event

Checking
Breakpoint
Event

Figure 13-8. Hardware Breakpoint detection flow (Setting)

13-10

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁ}?m

Checking
Breakpoint

Event

Mask Mask Checking
Instruction Value in Breakpoint
Event

address IAB

Check No
Condition

(Instruction)

No
Breakpoint
Event

No
Breakpoint
Event

Signal
Breakpoint

External

Trigger ?

BPC.BED =17
Generate
Exception ?2

Breakpoint
Exception

Figure 13-9. Hardware Breakpoint detection flow (IAB)

13-11

TOSHIBA

X
Chapter 13 Hardware Breakpoint mﬁﬁtcem

Checking
Breakpoint

Event

BPC.DVE=17?

Checking
Breakpoint
Event
(Data)

Check
Condition
(Address)

No
Breakpoint
Event

Yes

Check
Condition

Mask
Value in
DVB

No

Yes

Signal Yes
Breakpoint

o

No
Breakpoint
Event

Figure 13-10. Hardware Breakpoint detection flow (DAB/DVB) (1/2)

13-12

TOSHIBA

X
Chapter 13 Hardware Breakpoint mﬁﬁtcem

-

BPC.ITE=17? S|gna|

External
Trigger ?

Y

No
Breakpoint
Event

BPC.BED =17
Generate
Exception 72

Yes

Breakpoint
Exception

Figure 13-10. Hardware Breakpoint detection flow (IAB) (2/2)

13-13

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁ}?m

13.3.2 Instruction Breakpointing

The following code sets an instruction breakpoint from 0x1234_5600 to 0x1234_56ff, and
traps if the processor is either in user mode or in supervisor mode.

#

Setting Instruction address breakpoint from 0x1234_5600 to 0x1234_56ff
in user node and supervi sor node

#

1st sync.

sync. p # A barrier to ensure there is no pending

instruction address breakpoint in pipe.
pipeline flusing works for this purpose.

At first, disable instruction breakpointing to avoid spurious exceptions.
The foll owi ng uses conservative way not to break the configuration for
data breakpoi nting.

#
nfbpc $4 # get the value in BPC
bgez $4, 1f # skip following if (BPC[31] == 0)
nop # (bds)
li $5, (1 << 31) # IAE is in 31st bit of BPC
xor $4, $5, $4 # Resetting | AE bit to zero.
ntbpc $4 # rel oad BPC.
2nd sync.
sync. p # barrier to ensure the configuration change
of breakpoint function
1:
#
Reconfigure instruction breakpoint address.
Note that least significant 8 bits can be anything because it is nmasked
by | ABM regi ster anyway
#
l'i $4, 0x12345678
ntiab $4
#

Setting mask register. Masked if corresponding bit in nmask register
is reset to zero.

#

li $5, Oxffffffoo
ntiabm $5

#

Reconfigure instruction breakpoint. For better understanding, once
resetting all the bits for instructio breakpoint, and then sets new

config.
#
nfbpc $4
#

Reset IUE/ISE/IKE/ITE/I AB. Especially resetting IABis inportant to
know t he cause of next breakpoi nt exception correctly.

#
l'i $5, ~(\
(1 <<26) # IUE \
| (1 <<25) # ISE \
| (1 <<24) # IKE \
| (1 <<23) # IXE \
| (1 <<17) # ITE \
| (1<< 0) # 1AB \

)
and $4, $4, $5

#

Set new configuration to BPC register.

Note that setting BPC after 1AB/IABMis so inportant to avoid spurious
exception.

#

13-14

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁ}?m

l'i $6, $6, \
(\
(1 <<31) #1AE =110 enable Inst. B.P. \
| (1 <<26) #I1UE =11to enable Inst. B.P in user node. \
| (1 <<20) #1UE =11to enable Inst. B.P in supv. node. \
| (1 << 15) # BED = 1 to enabl e generating exception. \
)
or $5, $4, $6
ntbpc $5
3rd sync.
Sync. p # Barrier to ensure the configuration change

13-15

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁ}?m

13.3.3 Data Address Breakpointing

The following code sets a data address breakpoint from 0x1230_0000 to 0x1233_ffff for
both reading and writing, and traps if the processor is either in kernel mode(including
under levell).

#

Setting data address breakpoint from 0x1230_0000 to 0x1233_ffff

in kernel (normal,Ll) node

#

1st sync

sync. | # A barrier to ensure there is no pending
dat a address breakpoint in pipe.
Must flush all buffers for |oad/store for this
purpose by SYNC. L

#

At first, reset data-breakpoint related bits to zeros.
Resetting DWB/DRB is inportant so that the hander can recogni ze the
next breakpoint exception correctly.

#
nfbpc $4 # | oad current configuration
l'i $5, ~(\
(1<<30) # DRE \

| (1 <<29) # DWE \

| (1 <<28) # DVE \

| (1 <<21) # DUE \

| (1 <<20) # DSE \

| (1 <<19) # DKE \

| (1 <<18) # DXE \

| (1 <<16) # DTE \

| (1 <<2) # DWB \

| (1 <<1) # DRB \

)
and $4, $4, $5
ntbpc $4 # rel oad BPC.
2nd sync.
sync. p # barrier to ensure the configuration change
of breakpoint function

#

Reconfigure data breakpoint address.
Note that least significant 18 bits can be anything because it is masked
by DABM regi ster anyway

#

i $6, 0x12305678
ntdab $6

#

Setting mask register. Masked if corresponding bit in mask register
is reset to zero.

#

i $5, Oxfffc0000
nt dabm $5

#

Set new configuration to BPC register.
Note that setting BPC after DAB/DABMis so inmportant to avoid spurious
exception.

#
l'i $6, $6, \
(\
(1 <<30) #DRE =110 enable Data B.P on read \
| (1 <<29) # DWE =1 to enable Data B.P on wite \
| (1 <<19) # DKE =1 to enable Data B.P in kern. node. \
| (1 <<18) # DXE = 1 to enable Data B. P under L1. \
| (1 << 15) # BED = 1 to enabl e generating exception. \
)
or $5, $4, $6 # Note that $4 still holds the val ue used
on MIBPC.

ntbpc $5

13-16

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁ}?m

3rd sync.
sync. p # Barrier to ensure the configuration change

13-17

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁ}?m

13.3.4 Breakpointing by Data Address and Value

Setting Data Address and Value breakpoint is the same as Data Address breakpoint. The
following example is the same as the previous example except in that the trap only
happens if the data contains OXCAFE in least significant 16 bits, and traps only on loading
data.

#

Setting data address/val ue breakpoint from 0x1230_0000 to 0x1233 ffff

with data that contains OxCAFE in kernel (normal, L1) node.

#

1st sync.

sync. | # A barrier to ensure there is no pending
data address breakpoint in pipe
Must flush all buffers for |oad/store for this
purpose by SYNC. L

#

At first, reset data-breakpoint related bits to zeros
Resetting DWB/DRB is inportant so that the hander can recogni ze the
next breakpoi nt exception correctly.

#
nfbpc $4 # | oad current configuration
l'i $5, ~(\
(1<<30) # DRE \
(1<<29) # DWE \
(1<<28) # DVE \
(1<<21) # DUE \
(1<<20) # DSE \
(1<<19) # DKE \
(1<<18) # DXE \
(1<<16) # DTE \
(1<<2) # DWB \
(1<<1) # DRB \
)
and $4, $4, $5
ntbpc $4 # rel oad BPC
2nd sync.
sync. p # barrier to ensure the configuration change
of breakpoint function
#

Reconfigure data breakpoint address
Note that least significant 18 bits can be anything because it is masked
by DABM regi ster anyway

#

li $6, 0x1233ffff
nmdab $6

#

Setting mask register. Masked if corresponding bit in nmask register
is reset to zero.

#

li $5, Oxfffc0000
nt dabm $5

#

Configure data val ue address.
Note that least significant 8 bits can be anything because it is nmasked
by DVBM regi ster anyway

#

li $6, Oxbabecafe
nmdvb $6

#

Setting mask register. Masked if corresponding bit in nmask register
is reset to zero.

#

l'i $5, 0x0000ffff

nt dvbm $5

13-18

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁ}?m

#

Set new configuration to BPC register.

Note that setting BPC after DAB/DABMis so inmportant to avoid spurious
exception.

#
l'i $6, \
(\
(1 <<30) #DRE =110 enable Data B.P on read \
| (1 <<28) # DVE = 1 to enable Data value B.P \
| (1 <<19) # DKE =1 to enable Data B.P in kern. node. \
| (1 <<18) # DXE = 1 to enable Data B. P under L1. \
| (1 << 15) # BED = 1 to enabl e generating exception. \
)
or $5, $4, $6 # Note that $4 still holds the val ue used
on MIBPC.
nmtbpc $5
3rd sync.
sync. p # Barrier to ensure the configuration change

13.3.5 Data Value Breakpointing

Data value breakpoint can be configured so that it traps only by data value, by setting
zero to DABM register and configuring the data breakpoint to “Data Address and Value”
mode.

13-19

X
TOSHIBA Chapter 13 Hardware Breakpoint mﬁﬁ}?m

13.4 Triggering External Probes

There is one dedicated pad to make breakpoint visible outside of C790. This pad, TRIG*
signal, is asserted for two cycles whenever break point event is detected. This trigger
signal generation is enabled by setting ITE/DTE bit in BPC register to 1. Note that
assertion of TRIG* signal is not completely synchronized with the occurrence of exception:
TRIG signal is directly connected to the internal breakpoint detect logic while exception
including breakpoint always occurs along with retirement of instruction. Threfore,
thiming of the assertion of TRIG* signal and that of occurrence of exception may differs.
Especially, if the breakpoint is detected right before entering Level2 mode, and if the
breakpoint exception is taken imprecisely, exception may be masked because of processor's
mode change although TRIG* signal has already been asserted.

13.5 Important notice on using hardware breakpoint

One important issue not mentioned in this section is that breakpointing does not take care
of ASID on detecting breakpoint. This implies not only that software has to take care of it
on context switching to apply breakpointing for a specific process, but also that imprecise
breakpoint exception may be detected after or in the middle of context switching. In such
condition, it may become difficult to identify which process the breakpoint exception
belongs to. This can be avoided by executing SYNC.L instruction right before changing
ASID. (Since all imprecise breakpoint events relates to load/store instructions, executing
SYNC.L works as a barrier)

Relating to this issue, as briefly described in section 13.3, issuing breakpoint exception
may delay because of other level2 exception handling, although the breakpoint exception
is actual precedent from instruction ordering point of view. In such condition, because
C790 generates breakpoint exception after the processor returns from Level2,1 there is no
possibility to miss encounting the breakpoint. However, if the program need to insure the
order of occurrence between level2 exceptions, software has to take care of it (i.e. all level2
handler has to check the occurrence of breakpointing first). Similarly, if a level2 exception
DOES NOT return to where the exception was detected, software has to insure to reset
the condition of breakpoint.

1

C790 tracks the occurrence of breakpoint exception until the breakpoint exception is taken.

13-20

X
TOSHIBA Index m rise”

INDEX

A

FaN 2 1 PR OR 2-18, 11-6, D-4
FaN S (10| TSROSO 3-21, 10-14, D-41
ADSOIUIEVAIUE ...ttt s ket e e a et e e a bt e e aan et e s b b e e e s anb e e e e e nre e e e e e D-4
AADD ettt h e bttt ettt e bt e ebe e ehe e eReeen bt e aeeabeeebeeaneeaneeas 2-18, 3-15, 5-26, A-11, A-141
F LN 5 TSRS UROPROTRN D-5
FN 5 111 | USSR 3-21, 10-14, D-41
ADDI et 3-14, 5-26, A-12, A-141, B-163, C-41, D-40
ADDIU ..ttt et 3-14, A-12, A-13, A-141, B-163, C-41, D-40
AAArESSEITON ...ttt ettt sre e A-58, A-67, A-68, A-70, A-79, A-94, A-103, A-116
F N] 5 16 USRS 3-15, A-11, A-14, A-141
o | TSRS 4-20, 5-8, 5-15
N | USRS 4-20, 5-8, 5-15
7N € RSP RSR 8-5, 8-11, 8-14, 8-15
alignment............. 2-7,2-16, 3-8, 6-1, A-2, A-6, A-7, A-60, A-64, A-72, A-76, A-95, A-99, A-117, A-121, B-10,

B-162

ALU Lttt h ettt et eae et e a e e be e abeenteeereeennas 2-3, 2-10, 2-11, 2-12, 2-13, 3-14
AND Lo 3-14, 3-15, 3-25, A-3, A-15, A-16, A-141, B-4, B-48, C-39, C-40
ANDI ettt et sa e sne e nae s 3-14, A-16, A-141, B-163, C-41, D-40
2T o] (= PP PP PP UPPPR PP 8-2, 8-14, 8-15
F N USSR RURURRON 8-11, 8-14, 8-15
ASID.......... 2-15, 4-5, 4-8, 4-14, 5-16, 5-17, 5-18, 6-2, 6-3, 6-4, 6-9, 6-10, 6-12, 6-13, 6-16, 6-18, 13-20, C-38
YT o o= 1)/ YT PT TP PPPPTTTN 2-17
B

2= To | AN (o | OSSR 2-15, 4-5, 4-17, 4-25, 5-19, 8-25
2= To Y /Ao (o | SRRSO 2-15, 4-5, 4-9, 4-12, 5-15, 5-16, 5-17, 5-18
2= o AV o N RS ORUTRT 4-9
2 TSR C-41, C-42
20 USSP TSR 3-20, C-2, C-41, C-42
20 TSROSO 3-20, C-3, C-42
20 1 SRR RPOTRRTRRIRN 3-20, C-4, C-42
2 1 1 TR PSR TRRTSRRN 3-20, C-5, C-42
2 3 PR STURPPROT D-40
23 PP PRSP 3-21, 10-15, D-6, D-8, D-40
231 PR PP PRSPPI 3-21, 10-15, D-7, D-8, D-40
2] 3 USSP 4-19, 4-33, 5-5, 5-12, 5-13, 5-14, 5-25, 9-10

X
TOSHIBA Index m rise”

20N oSSR USRPRON 4-25
2] 1 TR RTURR R 4-29, 9-6, 9-8
2] RSSO URTURPPROTN 4-23
2] USSR R TUURRTRN 13-6, 13-15, 13-16, 13-19
BEMoooeiiiiiee 4-16, 4-17, 4-25, 5-9, 5-11, 5-19, 8-25, A-61, A-62, A-65, A-66, A-73, A-74, A-77, A-78,
A-97, A-98, A-101, A-102, A-119, A-120, A-123, A-124
2] @ U SPOTRRT SR 3-17, A-17, A-141, B-163, C-41, D-40
2] @] RSP RRTRR 3-17, A-18, A-141, B-163, C-41, D-40
BEV...coooiiiiiieene 4-16, 4-17, 5-7, 5-11, 5-12, 5-15, 5-16, 5-17, 5-18, 5-19, 5-20, 5-21, 5-22, 5-23, 5-24, 5-26,
5-27,5-28, 12-6
2] SRR C-6
21 ARSI 3-18, A-19, A-142
21 72 SRR 3-18, A-20, A-142
21 72 I SRR 3-18, A-21, A-142
21 74 TP 3-18, A-22, A-142
2 17 SRR RUR 3-17, A-23, A-141, B-163, C-41, D-40
2 17 SRR 3-17, A-24, A-141, B-163, C-41, D-40
2] 11N = SRR C-6
2] N USSP 1-2, 2-3, 2-6, 2-7, 4-31, C-10
2] 1 RSO RRURRTR 2-4
BLEZ ..ottt ettt e r et ae e nreenes 3-17, A-25, A-141, B-163, C-41, D-40
BLEZL ...ttt ettt bbbt she e e e e 3-17, A-26, A-141, B-163, C-41, D-40
2] I 1R 3-18, A-27, A-142
2] I 1 PP 3-18, A-28, A-142
2] 12 I PP RR 3-18, A-29, A-142
2] I 17 RSP RP 3-18, A-30, A-142
BINE ..ttt bbbt be et e e enae e b e nee e e 3-17, A-31, A-141, B-163, C-41, D-40
BINEL ...ttt ettt ettt ettt ettt sttt e b bt e e na e ne e nee e 3-17, A-32, A-141, B-163, C-41, D-40
(oTo o] 653 1c=1 o] 11 o To [P PSPPI 5-11
BPC ...t 4-26, 5-11, 13-3, 13-4, 13-5, 13-8, 13-14, 13-16, 13-18, 13-19, 13-20
2] o TSSO URUPUTRRTRRTIN 4-23,5-11, C-9
2] TSROSO 2-3,2-11, 2-12, 3-26
o] =T To] o I8 11 2= |V RSP PRRT P 2-13, 9-10
BREAK ...ttt 2-11, 3-18, 5-10, 5-21, 9-7, A-33, A-39, A-141, B-8, B-67
breakpoint............ 1-2, 2-19, 3-18, 5-10, 5-11, 5-14, 5-19, 12-1, 13-1, 13-2, 13-3, 13-4, 13-6, 13-7, 13-8, 13-9,
13-14, 13-16, 13-18, 13-19, 13-20, A-33
DIrEAKPOINES ...ttt e e e e e bbb e e e e e e e abn e e e e e e e eane 12-1, 13-5, 13-8, A-2
BTAC....oiiiiiieeee e 1-2, 2-3, 2-6, 2-7, 4-29, 4-31, 9-6, 9-7, 9-8, C-6, C-7, C-9, C-10, C-11, C-13, C-28
BUSERR ...ttt sttt ettt see e snt e nbe et e beesbeennee 5-19, 8-10, 8-25, 8-26, 8-27, 8-28, 8-29
2 = SRR OR TR C-6

X
TOSHIBA Index m rise”

2] 2 1 RS TRTR C-6
C

O3 oTo] 1 [0 11 B OO PP P PP PPPPPPRPPPPPN D-8
(O3 o] [0 I8 1211 AF USSR PRTUPRRRTR 3-21, 10-15, D-41
(O3 oTo] 1o 101 PR PP PP P PRTRUPPPR PP D-6, D-7, D-41
LG oTo] 1 [0 10 T PO P TP PP PR PPPPPPTPPPPPN D-8
Cache.....cccoceeeee 1-2, 2-1, 2-3, 2-6, 2-7, 2-15, 2-17, 2-18, 3-20, 4-5, 4-17, 4-29, 8-2, 8-8, 9-7, 9-9, A-6, A-7,

C-6, C-7, C-8, C-9, C-13
CACHEc........ 2-11, 2-13, 2-17, 3-20, 4-17, 4-23, 4-31, 4-32, 5-19, A-141, B-163, C-6, C-7, C-8, C-9, C-10,
C-11, C-12, C-13, C-41, D-40

107 T 1 1=T @ o T PP TR PRPTPPR C-7
CAUSEttt ettt h e e ettt ekt e oAt e e bt e ebe e ehe e eR et oAbt oAbt e bt e eReeeR et eReeenbeenbeebeeereeseneeneeanteas 8-13, 9-10
L0 0] = SO 9-2, 9-5, 9-10, 9-11, A-3
O TSRS 4-19, 4-23, 5-2, 5-23
L0 | SRR USTUPPPROTN D-12
(08 | I 113 | USSR 3-21, 10-14, D-41
(08 | PSSR URTPPPPROTN D-13
(08 |V {1) STV R PRSP 3-21, 10-14, D-41
L0 3 SR UPTOURTSUPRN 3-21,10-13, 11-9, D-14, D-40
L0 TS RRURR PRI 4-16, 4-17
(of0] g [=T 1T o[y YT PUPTUPPPPPRTT 2-18, 4-8, 4-24, 6-12, 6-16, 8-2
(670] 01T 1] o 1oy Y UUPT TP 6-17
(00T) 1o TR RS URTRRROUPR 2-15, 4-5, 4-23, 5-11, 6-7, 6-12, C-9
L0 @] N CRURORR 9-10, C-28
(o10] 015111 (=1 03 PSSP UURTPTPI 13-9
(00T 41 (= TSRS 2-15, 4-5, 4-9, 5-15, 5-16, 5-17, 5-18
(o103 PO PSPPI 6-3
(@0 017 =T o o | SRRSO D-2, D-16, D-17, D-18, D-19, D-23, D-24
COPO ..o 2-7,2-11, 2-12, 2-13, 2-15, 3-2, 3-20, 4-1, 4-5, 4-16, 4-17, 4-22, 4-28, 5-23, 6-1, 6-3, 6-14,

8-25, 9-2,9-3, 9-11, A-4, A-141, A-142, B-163, C-1, C-7, C-9, C-10, C-11, C-12, C-14, C-15,
C-17, C-18, C-19, C-20, C-21, C-22, C-23, C-24, C-25, C-26, C-27, C-28, C-29, C-30, C-31,
C-32, C-33, C-34, C-35, C-36, C-41, C-42, D-40

COPL...cccvveeiis 2-3, 2-4, 2-7, 2-8, 2-10, 2-11, 2-12, 2-13, 2-14, 3-2, 3-21, 4-29, 9-6, 9-7, A-8, A-125, A-141,
A-142, B-163, C-16, C-41, D-1, D-2, D-27, D-29, D-40, D-41

COprocessor 2-4, 2-7, 2-8, 2-16, 3-5, 3-21, 4-16, 4-17, 5-11, 5-23, 6-1, 10-2, A-4, A-5, A-142, C-1, C-2,
C-3, C-4, C-5, C-14, C-15, C-18, C-28, D-1, D-14, D-15, D-21, D-26

Coprocessor 1-1, 1-5, 2-11, 2-15, 3-2, 3-5, 3-16, 3-20, 3-21, 4-1, 4-5, 4-16, 4-19, 4-20, 5-2, 5-8, 5-9,

5-10, 5-23, 6-1, 6-14, 8-10, 8-11, 13-2, A-3, A-4, A-5, A-8, A-141, A-142, C-1, C-2, C-3,
C-4, C-5, C-7, C-16, C-17, C-18, C-19, C-20, C-21, C-22, C-23, C-24, C-25, C-26, C-27,
C-28, C-29, C-30, C-31, C-32, C-33, C-34, C-35, C-36, C-37, C-38, C-39, C-40, D-4, D-5,

X-3

X
TOSHIBA Index m rise”

D-6, D-7, D-11, D-12, D-13, D-14, D-15, D-16, D-17, D-18, D-19, D-20, D-21, D-22, D-23,
D-24, D-25, D-26, D-27, D-28, D-29, D-30, D-31, D-32, D-33, D-34, D-35, D-36, D-37, D-38,

D-39
L070] o] (0 ToT 25T o] {0 JNT TP OO T PP PP PTPRPRPRPRPRIN: 13-4
COUNE ettt ettt et e et e et e bt e sbe e sbeesbeeseeesnnesnneas 2-15, 3-25, 4-5, 4-13, 4-15, 5-24, B-4, B-5
COUNter.....ceveenene 2-15, 2-16, 2-19, 3-17, 4-5, 4-17, 4-18, 4-19, 4-28, 4-30, 4-33, 5-5, 5-9, 5-13, 6-1, 9-1, 9-2,
9-3, 9-5, 9-6, 9-8, 9-10, 9-11, C-28, C-35
Counterccc...... 2-3, 2-15, 2-19, 3-20, 4-1, 4-2, 4-3, 4-4, 4-5, 4-19, 4-21, 4-28, 4-29, 4-30, 5-2, 5-7, 5-8,
5-9, 5-10, 5-11, 5-13, 9-1, 9-2, 9-3, 9-4, 9-5, 9-6, 9-10, 9-11, 12-6, A-4, C-25, C-26, C-35
(03 =01 @] N 5 SRR RRTRR A-3
CPCONDO ...ttt ettt ettt a e he et e b e eb e e sbe e sbeeesbeenbeebeasbeeeneeaneeenteens 8-10, 8-11, C-2, C-3,C-4,C-5
CPR ..o A-3, C-17, C-18, C-19, C-20, C-21, C-22, C-23, C-24, C-25, C-26, C-27, C-28, C-29, C-30,
C-31, C-32, C-33, C-34, C-35, C-36
CPUADDR ...ttt ettt ettt et he e e h e e et ekt oo he e eh e e eh et eR bt e mbe e bt e ket eR et eR et e be e ebeeeReeeReenbeereeareeas 8-3, 8-7, 8-9
CPUASTART .ttt ettt ettt sttt sae e smbe e e nbeesbeeseeea 8-3, 8-7, 8-8, 8-9, 8-12, 8-13, 8-16, 8-19
CPUBE. ...ttt ettt ekttt ettt e st ekt e o bt e e h e e eR e e e R bt e nEe e ke e ek e e eE et eR et eneeebeeeReeeReenbe e beenreenreeas 8-3, 8-7, 8-9
(03 U I TS URTOTSOPSRUPN 8-11
CPUD AT A ettt ettt ettt e e bt e e a et et e e bt e ehe e ehe e eaeeeR bt e be e beeabeeereeenbeenteearee e 8-3, 8-7, 8-9, 8-17, 8-20
CPUDSTART ...ttt 8-3, 8-10, 8-12, 8-13, 8-16, 8-17, 8-19, 8-20, 8-26, 8-28
CPURD ..ttt ettt ettt ettt e bt e e h et e et ekt oo he e eh e e eR e e oA Eeen bt e b e e eE et eR e e eR et e te e ebeeeReenbe e beenreeareeas 8-3, 8-8, 8-9
(08 W R TN N I I] PP RTRR 8-8
CPUTSIZE ...ttt ettt ettt e bt sae e et e smbe e mbeebeenbeeseeas 8-3, 8-9, 8-12, 8-13, 8-16, 8-19
CPUWR ettt ettt ettt bt e s et e bt e ehe e e h e e eh e e om b e embe e bt e ekt e eb e e em e e embeebeeebeeseeanbeenbeenbeeareeas 8-3, 8-8, 8-9
O I SRR 3-21, 10-7, 10-8, 10-9, 10-13, 11-9, D-15, D-40
O I OO PR 4-28, 4-29, 5-11, 9-2, 9-4, 9-5, 9-10, 9-11
(O 11 (OSSR 4-29, 9-10, 9-11
(O I 3 OSSOSO 4-29, 9-10, 9-11
O USSR 1-5, 3-5, 3-20, 3-21, 4-16, 4-17, C-1, C-14, C-15
LG TSRO URURTORRRN 5-23, C-7
LGV RSSO RTUPPPROTN 3-26
LGV 1 B SRR USTUPRPPROTN D-16
LGV I B 1 OSSPSR 3-21, 10-14, D-41
LGV TSR USTPPPPROTN D-17
OV I 1 USSP 3-21, 10-14, D-41
OV I TSRS USTUPOPROTN D-18
LGV RSN 11 S RSOOSR 3-21, 10-14, D-41
OV I 113 OSSPSR 3-21, 10-14, D-41
OV I SRR STUPPPROTN D-19
D
DY = SRR 4-27,13-3, 13-7, 13-12, 13-16, 13-19

X
TOSHIBA Index m rise”

(D21 = USSR 4-27,13-3, 13-7, 13-16, 13-18, 13-19
[B TSR RPRTRTN 3-15, 5-26, A-34, A-141
DADDI ...ttt bbb re e 3-14, 5-26, A-35, A-141, B-163, C-41, D-40
DADDIU ...ttt bbb ee e 3-14, A-35, A-36, A-141, B-163, C-41, D-40
DADDU ...ttt ettt ettt b ettt R e Rt et e e bt e Rt e eR ettt e ebe e eheenaeeaneeaneeenean 3-15, A-34, A-37, A-141
D2 TSP 4-20, 5-8, 5-19
D OSSR UR RSP 4-23
DICE .ttt ettt ekt ket R e R At be e Rt e eR et et e e be e ebeeeReeeneeenbeabeenteeaaeas 4-23, 5-11, 9-7, C-9, C-28
D7 TSRO UTRI 3-4, 3-14, A-142, B-165, C-42, D-41
(D7) AV O SRR OTR PRSI 3-4, 3-14, A-142, B-165, C-42, D-41
EBUG .ot 3-20, 4-17, 4-18, 4-19, 4-26, 4-33, 5-10, 5-14, 13-6
D] = O TSRS TURPPROTN 5-14
D OSSR URUTRTR 3-6
(o [=Tolo 0] o] 10 Vo O UURP TP 2-4
(DT o [U 111 o] 1= (o [P R TP UPRPT 2-18, 8-2
DIEV ettt ettt ettt ettt be b e e reenree s 4-16, 4-17, 5-7, 5-13, 5-14, 5-25, 9-10, 12-6
[1 SRR C-6
(DT VLY =] N SRR OR TR C-6
(DT V1YL N RPN C-6
3] R TRR 3-20, 4-16, 4-17, 5-23, C-1, C-14, C-15, C-42
D] | ORISR 4-23, 4-24, 5-11
0T YRR OU PR 4-8, 5-18, 6-16, 8-12, A-91, C-11, C-12
D] Y2 TR TURRORRORRTR 4-8, 4-32, 5-11, 6-16, C-11, C-12, C-13
(0[] o= Lol 0 =T T U PPT TP 3-17
(o115 o] FoTot=T0 0 T= o | ST PPRPPPN 3-3, A9
DIV ettt ettt ee e 2-18, 3-16, 3-26, A-38, A-40, A-80, A-141, D-20
DTV {44 SO RRTT 3-21, 10-14, D-41
DIV .ttt bttt et ee e e en 2-14, 3-23, 3-26, 4-2, B-3, B-7, B-9, B-163
DiIVIOE ..ttt 1-1, 2-6, 3-14, 3-16, 3-21, 3-22, 3-23, 3-24, 3-26, 4-1, B-3, B-5, B-8
[Y TSP URRURPRIN 3-16, 3-26, A-40, A-141
DIVUL .ottt sttt et e sbe et e eneeenne e e e e 2-14, 3-23, 3-26, 4-2, B-3, B-9, B-163
D SRR UURSUR SRR 13-6, 13-16, 13-18, 13-19
DIMA ettt ettt 8-1, 8-3, 8-6, 8-7, 8-10, 8-12, 8-13, 8-14, 8-25, 8-26
DY OSSO 8-1, 8-3, 8-10, 8-11, 8-13, 8-14, 8-25, 8-26
[3 PR RTSTURPURR 3-21, 10-13, D-21, D-40
1Y I OSSR STURUPRUTR 3-21, 10-13, D-22, D-40
1Y 1 SRR URTORUP 3-4, 3-14, A-142, B-165, C-42, D-41
DIMULTU ettt ettt ettt et e et nbe e sbeesbeeenneeneeenneen 3-4, 3-14, A-142, B-165, C-42, D-41
doubleword 3-5, 3-8, 3-9, 5-15, A-4, A-5, A-6, A-34, A-37, A-41, A-42, A-43, A-44, A-45, A-46, A-47,

A-48, A-49, A-50, A-51, A-58, A-59, A-60, A-63, A-64, A-72, A-94, A-95, A-96, A-99, A-100,

X-5

X
TOSHIBA Index m rise”

A-118, A-122, B-2, B-64, B-65, B-72, B-74, B-78, B-79, B-80, B-81, B-82, B-83, B-89, B-93,
B-95, B-113, B-120, B-122, B-128, B-129, B-130

DT TSR UPSPR SR 13-6, 13-16, 13-18
DIRE .ttt ettt ettt ettt bttt sb e ne e naeeae e neee e 5-11, 13-5, 13-6, 13-8, 13-16, 13-18, 13-19
D] PRSPPSO 13-6, 13-16, 13-18
[I TR RTRP 3-15, A-41, A-141
(DS I TR 3-15, A-42, A-141
DS] INR SUR T RSP 3-15, A-43, A-141
(D251 = ¥ USSP 3-15, A-44, A-141
(D251 2 ¥ N 72 TR 3-15, A-45, A-141
(D251 = ¥ PSPPSR 3-15, A-46, A-141
D251 = { ISR 3-15, A-47, A-141
(D251 = {1 PSPPSR 3-15, A-48, A-141
(D251 = IR ORI 3-15, A-49, A-141
(D251 U 12 SRR TRRURTRPN 3-15, 5-26, A-50, A-141
(D251 U 2] USSR 3-15, A-50, A-51, A-141
D SRS P PP RSN 13-6, 13-16, 13-18, 13-20
[I SRRSO 2-3, 2-6, 2-16, 4-29, 9-6, 9-8
DUE ettt ettt ettt he etttk e ke k£ e R et eR At R R e oA Rt e ekt e eRe e eR et e bt e abe e eheeeaeeeane et eteeareeas 13-6, 13-16, 13-18
[= TSP TRTURTRN 4-27,13-3, 13-8, 13-12
[2 SRR TRRPRRRN 4-27,13-3, 13-8, 13-18
D ST UPRRUR USRS 13-5, 13-16, 13-18, 13-19
[T SO PPRVRURROTN 13-6, 13-16, 13-18
DWWE . .ttt ettt ettt ettt et h et e ettt e e b e b e e ehe e enteenbe e beenneenreenneeas 5-11, 13-5, 13-6, 13-8, 13-16, 13-18
D) OSSP UPUPRURTRN 13-6, 13-16, 13-18, 13-19
[SRR C-6
[I SRR OUP TR C-6
[I I RSP R C-6
(D)5 5 L SRR OUP TR C-6
(D) S I C T SRR ORP TR C-6
DXWVBIN ..ttt ettt ettt ettt etttk e e b e ettt es e e a bt 2 ke e eE e e eh et em et 2 Ee e eE e e She e 4R et eR b e e R Rt e Rt e ae e eRneenbeeeheeeneeenneenneenn C-6
E

SRS TUSPPROT 4-23
] SO UTR TSR 4-16, 4-17, 5-23, C-1, C-14, C-15
[0 |11 o DT TP PP TP O PP PPPRPPPPPPPPPPRTN 4-23
OO RURP 3-20, 4-16, 4-17, 5-23, C-1, C-14, C-15, C-42
Bl ettt e be e bt e Rt e et e e bt e ebeeeaeesaeeennas 4-16, 4-17, 4-18, 5-24, C-14, C-15
endianc....... 3-5, 3-6, 3-7, 3-9, 3-10, 3-11, 3-12, 3-13, A-3, A-6, A-61, A-62, A-65, A-66, A-73, A-74,

A-77, A-78, A-97, A-98, A-101, A-102, A-119, A-120, A-123, A-124

X
TOSHIBA Index m rise”

S a6t Tl =T O OO PP PP TP PP PP PPPPP P 1-2,3-5
EntryHi ..o 2-15, 4-5, 4-14, 5-15, 5-16, 5-17, 5-18, 6-2, 6-3, 6-4, 6-15, C-28, C-37, C-38, C-39, C-40
1Y | TP OO TP PP PPPPPPPTPPPP 6-16
[01 1Y o TP UUR PRI C-37
(Y I T USROS 5-15, 5-16, 5-17, 5-18, 6-15, C-38, C-39, C-40
(Y7 o 0 PR 2-15, 4-5, 4-8, 5-16, 6-15, 6-16, C-38, C-39, C-40
1Y/ o 1 TSR 2-15, 4-5, 4-8, 5-16, 6-15, 6-16, C-38, C-39, C-40
EPC..cceiiiviiiee 2-6, 2-15, 4-5, 4-21, 4-33, 5-2, 5-3, 5-15, 5-16, 5-17, 5-18, 5-19, 5-20, 5-21, 5-22, 5-23,
5-26, 5-27, 11-9, C-16
ERET 2-11, 2-12, 2-13, 3-20, 4-4, 5-5, 5-24, 6-11, 9-7, 9-11, 12-2, 12-5, C-16, C-38, C-39, C-40, C-42
ERL...coooviiiiiaiene 4-16, 4-17, 4-18, 5-5, 5-9, 5-11, 5-12, 5-13, 5-14, 5-19, 5-24, 5-25, 6-6, 6-7, 6-8, 6-9, 6-10,
6-11, 6-12, 9-2, 9-10, 9-11, 13-5, 13-6, C-14, C-15, C-16
[L0 RS URPUTRTR 9-5
T SRR URUTRTR 9-5
Error.....cocoveveeneene 2-6, 2-15, 4-5, 4-12, 4-17, 4-18, 5-2, 5-10, 5-15, 5-19, 5-23, 6-6, 6-7, 6-9, 8-13, 8-25, 8-26,

8-28, A-2, A-54, A-55, A-56, A-57, A-58, A-62, A-66, A-67, A-68, A-70, A-74, A-78, A-79,
A-93, A-94, A-98, A-102, A-103, A-116, A-120, A-124, B-10, B-162, C-7, C-8, D-26, D-34,

D-37
EITOTEPC.....oii ettt s 4-33, 5-5, 5-12, 5-13, 5-14, 5-25, 9-10, 9-11, C-16
L o] = PP PP PPPTP 2-15, 4-5
Y RS OUR TR 9-5
Y 0 ST 4-28, 4-29, 9-2, 9-5, 9-6, 9-11
Y USRI 4-28, 4-29, 9-5, 9-6, 9-11
EXC 2.ttt 4-19, 5-5, 5-8, 5-11, 5-12, 5-13, 5-14, 5-25, 9-10
ExcCode 4-19, 4-20, 5-2, 5-8, 5-15, 5-16, 5-17, 5-18, 5-19, 5-20, 5-21, 5-22, 5-23, 5-24, 5-26, 5-27
exception.............. 2-15, 2-16, 2-18, 2-19, 3-2, 3-5, 3-16, 3-18, 3-20, 4-4, 4-5, 4-9, 4-12, 4-14, 4-16, 4-17, 4-18,

4-19, 4-20, 4-21, 4-29, 4-33, 5-1, 5-2, 5-3, 5-5, 5-8, 5-9, 5-10, 5-11, 5-12, 5-13, 5-14, 5-15,
5-16, 5-17, 5-18, 5-19, 5-20, 5-21, 5-22, 5-23, 5-24, 5-25, 5-26, 5-27, 6-1, 6-2, 6-4, 6-6,
6-9, 6-11, 6-14, 6-15, 6-16, 6-17, 6-20, 8-13, 8-25, 9-2, 9-7, 9-8, 9-10, 9-11, 10-8, 11-2, 11-3,
12-1, 12-2, 12-3, 12-5, 12-6, 12-7, 12-14, 12-15, 12-16, 12-17, 12-18, 12-19, 12-20, 13-2,
13-4, 13-5, 13-6, 13-8, 13-9, 13-14, 13-15, 13-16, 13-18, 13-19, 13-20, A-2, A-6, A-8, A-11,
A-12, A-13, A-14, A-20, A-21, A-28, A-29, A-33, A-34, A-35, A-36, A-37, A-38, A-39, A-40,
A-50, A-51, A-54, A-55, A-58, A-67, A-68, A-70, A-86, A-87, A-91, A-92, A-94, A-103, A-106,
A-107, A-108, A-109, A-114, A-115, A-116, A-126, A-127, A-128, A-129, A-130, A-131,
A-132, A-133, A-134, A-135, A-136, A-137, A-138, A-142, B-7, B-8, B-9, B-11, B-12, B-13,
B-14, B-20, B-21, B-22, B-23, B-25, B-27, B-28, B-66, B-67, B-68, B-70, B-71, B-84, B-86,
B-91, B-93, B-95, B-111, B-113, B-118, B-120, B-122, B-165, C-1, C-2, C-3, C-4, C-5, C-7,
C-8, C-16, C-17, C-18, C-19, C-20, C-21, C-22, C-23, C-24, C-25, C-26, C-27, C-28, C-29,
C-30, C-31, C-32, C-33, C-34, C-35, C-36, C-37, C-38, C-39, C-40, C-42, D-26, D-37, D-41
Exception.............. 2-6, 2-11, 2-15, 2-19, 3-18, 3-20, 3-21, 4-5, 4-18, 4-20, 4-21, 5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 5-7,
X-7

X
TOSHIBA Index m rise”

5-8, 5-9, 5-10, 5-11, 5-12, 5-13, 5-14, 5-15, 5-16, 5-17, 5-18, 5-19, 5-20, 5-21, 5-22, 5-23,
5-24, 5-25, 5-26, 5-27, 5-28, 6-6, 6-11, 8-25, 8-26, 12-2, 12-5, 12-6, 12-7, 12-14, 12-15,
12-16, 12-17, 12-18, 13-2, 13-6, A-8, A-37, A-79, B-62, C-8

[oY 01T LU PP PPRRT 11-5
EXECULION PIPEINEeeiiiii i 2-3, 2-5, 2-10, 2-11, 2-12, 3-26, C-16
EXHING ..ttt nas 12-14, 12-15, 12-16, 12-17, 12-18
ot T o 1 O PPOPRRTRTIN 12-19, 12-20
Dt [o RPN 12-19, 12-20
EXL oo 4-16, 4-17, 4-18, 4-21, 4-29, 5-2, 5-5, 5-7, 5-9, 5-12, 5-16, 5-19, 5-24, 6-6, 6-8, 6-9, 6-10,
6-11, 6-12, 9-2, 12-6, 13-5, 13-6, C-14, C-15, C-16
B0 ettt bbbt Rt e oAbt be e Rt e eR et oA et e te e Rt e eReeeheeeReeeR Rt enbeebeeaneeneeneen 4-29,9-2,9-5, 9-11
I TSR 4-29, 9-5, 9-11
F
O SRS TUSPPROTN D-14
O O RS URTURPPROTN 10-4
O PR RRT 10-4, 10-6, D-15
O RSP USTURTPPROTN 10-4
(o1 VN (o | £ T TP PUPPPPPPI C-10,C-11
] = SRR 10-13
€] L RO URTURRPPROTN 10-2
10 10 T 3 PR URTPPROPROTN D-23
[0 1@ T 3 0 {10 | SRR 3-21, 10-14, D-41
FLOOR.W. ettt ettt ekttt ekt h et o2t e bt oo bt e eh et o2 et e ka2 eh e e eh e e 4R et em ke e m ke e ke e eh e e em et emeesbeeseneenbeanbeebeenreeas D-24
[O @7 YV 1 | PP TRTR 3-21, 10-14, D-41
L] @ oo P PP D-14, D-15
L PSPPSR 4-20, 5-8, 5-28, 11-3
FPR ..o 2-3, 2-9, D-2, D-4, D-5, D-8, D-12, D-13, D-16, D-17, D-18, D-19, D-20, D-21, D-22, D-23,
D-24, D-26, D-27, D-28, D-30, D-31, D-32, D-33, D-35, D-36, D-37, D-38, D-39
[2 LTRSS 10-2, D-10, D-16, D-17, D-28
FPU ..o 1-2, 2-3, 2-7, 2-8, 2-14, 2-18, 4-16, 10-13, 10-14, 11-2, 11-5, 11-8, D-1, D-2, D-3, D-14,
D-15, D-27, D-29
L TSSOSO TRURRON 4-16, 4-17, 10-2
fUNNEl Stooeeiii e 2-3, 2-14, 4-1, 4-2, 4-4, B-17, B-20, B-21, B-22, B-161
FUNNEIE SHIE ...ttt e et e e st et e e e s bt e e e sab b e e e e aabe e e e e aabe e e e e anbreeeeanreeeenans 2-11
G
[0 T2 Lia 1T o OSSR 2-4,2-19, 6-17, 9-1, A-8, A-125
General PUIPOSE REQISIEISoiiiiiiiiiiiieie ettt a e e e 2-3,4-1, 4-2, 4-3, 4-4, A-3
(o] [0] o= LI o | PO PSPPI 6-18
(€]] SRR URTPPPPROTN D-21
€]] = O SRR B-21, B-22

X
TOSHIBA Index m rise”

GPRLEN L.ttt e e e e re s A-3, D-6, D-7
H
o | T 2-11, 2-14, 3-16, 3-22, 3-23, 3-24, 3-26, 4-1, 4-2, 4-3, 4-4, A-38, A-39, A-40, A-80, A-84,

A-86, A-87, B-2, B-5, B-11, B-13, B-23, B-25, B-66, B-67, B-68, B-70, B-84, B-85, B-86,
B-87, B-91, B-92, B-93, B-95, B-101, B-102, B-111, B-113, B-115, B-116, B-118, B-120,

B-122

1T PSP 4-2, 4-3, 4-4, B-2
HIL o, 2-11, 2-14, 4-2, 4-3, 4-4, B-2, B-3, B-7, B-8, B-9, B-12, B-14, B-15, B-18, B-24, B-26
RIE UNOEE IMHSS ettt e ek e e e e e e e e st e e e e e sk b e e e e sk be e e e s abeesanbe e e e s sanneeeeanns 1-2, 4-23
I

N 2 RS TRR 4-27,13-3, 13-6, 13-7, 13-11, 13-13, 13-14
7Y 2] USRS 4-27,13-3, 13-7, 13-14
A SRR ROUOPR 5-11, 13-5, 13-14, 13-15
] SRS 4-20, 5-8, 5-19
ST SP 4-23
L SRR 4-23,5-11, C-9
USSP 4-14, 6-16
LB ettt a ettt anbe e reeaneas 4-16, 4-17, 4-18, 5-9, 5-12, 5-24, C-14, C-15
[EEE ... 2-18, 10-1, 10-8, 10-9, 10-10, 11-2, 11-3, 11-6, 11-7, 11-8, 11-9, D-8, D-12, D-13, D-19
] TP SUROURTRN C-6
1 1 SR SURORRTRN C-6
LK E ettt ettt ettt etttk h e R ettt e koo eRe e Rt e oA et ea Rt e Re e eR e e eR et R bt eR Rt enEe e bt ebeeeReeeRbeenbeenneenneas 13-5, 13-14
OO RURTURROPR 4-13, 4-16, 4-17, 4-18, 5-9
48] 0T g=TotEY SRR OTRTR 5-14, 5-19, 8-13, 13-2, 13-5, 13-8, 13-20
INdeXccooeeruernnnn. 2-15, 3-20, 4-5, 4-6, 5-18, 5-19, 6-20, C-7, C-9, C-10, C-11, C-12, C-13, C-37, C-38, C-39
1N USSR C-6
Lo 1= YR UTRURUSROTRT C-38, C-39
T TP TP POPPPPRRRP 9-11
IMIEIBUIZE ..ottt ekt e e ekt e e o ek et e e ek b et e e ek b et e e ek b et e ek b e e e e e an b e e e e e abr e e e e anreeeenn 9-11
QYL E= 1141 o o PSP 5-11
T T1 (=14 oo [P TR PPUPEURP 9-11
N SO SP 8-10
Q1] 4 (oY= PP PP PP PO PPPPPPPPIN B-88, B-89
g1 (ST 4 [So Y=o E PSP PP PPPPPRPPPIN B-88, B-89
interrupt........ 1-5, 3-16, 3-22, 4-13, 4-15, 4-16, 4-17, 4-19, 4-33, 5-24, 8-10, 8-13, 8-25, 8-26, 9-4, 13-8, C-16
Interrupt............... 3-20, 4-16, 4-17, 4-18, 4-19, 4-20, 5-2, 5-5, 5-7, 5-8, 5-9, 5-10, 5-12, 5-24, 8-10, 8-25, 12-6
B TUPES .. 4-16, 4-18
INVALIDATE ..ttt ittt bttt ettt ettt ettt e s bt e s he e sa e e e a et e be e ehe e ehe e oR b e em b e e m b e e mEe e b e e eb e e eh et em et embeebeesaeeenbeembeebeenbeesnneas C-6
Y USSR 13-5, 13-14
ST OO O PP PPPT 2-3,2-12

X
TOSHIBA Index m rise”

(£SO P PP OPPPRPPI 2-3,4-24,8-12, 13-9
LI TSSO URUROTN 13-6, 13-14, 13-20
81 PSR RR 2-3, 2-6, 2-16, 9-6, 9-8
1 SRRSO 13-5, 13-14, 13-15
IV e 1-1, 1-2, 1-3, 2-16, 3-2, 3-4, 3-19, 6-1, A-82, A-83, A-91, A-141
DX B ettt et ettt be ekt e eR et oA et be e eRe e eRe e oA e e oA Ee oA Rt e Ee e R e e eE et eR et en Rt e beebeeeReeenbeenbeenneenreas 13-5, 13-14
DL USSR C-6
DG SO URORRTRN C-6
DG ISP RUSORRTRN C-6
DS B USSR C-6
DS TP URORRTRN C-6
J
J e 3-3,3-17,9-7,12-2, A-9, A-17, A-18, A-19, A-22, A-23, A-24, A-25, A-26, A-27, A-30, A-31,
A-32, A-52, A-61, A-62, A-65, A-66, A-73, A-74, A-77, A-78, A-141, B-163, C-41, D-6, D-7,
D-40
JAL i 3-17,9-7,12-2, A-20, A-21, A-28, A-29, A-53, A-141, B-163, C-41, D-40
JALR Lo 3-17,9-7, 12-2, 12-5, A-20, A-21, A-28, A-29, A-54, A-141
TP ettt ettt h bt h ekt R oAbt bt ket eR et eR At e Ee e eEe e eRe e oA et oA Rt e Ee e ke e eReeneeenbe e abeeeneeenee e 12-3,12-4
JIMPB .ttt ettt h ekt b e Rt eR bttt oAbt e R e e oA et oAbt Ee e eRe e eReeeR et eRbeeR Rt enbeeneeebe e ereenneeenee e e 12-3,12-4
IRt 3-17, 9-7, 12-2, 12-5, A-17, A-18, A-19, A-22, A-23, A-24, A-25, A-26, A-27, A-30, A-31,
A-32, A-55, A-141, D-6, D-7
B 8 I SRS 9-6, 9-8
K
S TSSO 4-23, 4-24, 4-29, 6-7, 6-12, 9-2, 9-5, 9-10, 9-11, C-28
(= T 6-2, 6-5, A-17, A-18, A-19, A-20, A-21, A-22, A-23, A-24, A-25, A-26, A-27, A-28, A-29,
A-30, A-31, A-32
Kernel.......ccocveueee 2-16, 2-19, 3-20, 3-26, 4-16, 4-17, 4-18, 4-29, 5-2, 5-22, 5-23, 6-1, 6-6, 6-7, 6-10, 6-11,
6-12, 6-13, 9-2, 13-5, 13-6, C-1, C-7, C-14, C-15
T =To [0 SRR SRR 4-24, 6-7, 6-12, 9-10, C-28
RS To i U PPTT T PUPPP 6-7, 6-12
L T=To K SRR 2-16, 4-9, 6-1, 6-7, 6-12, 6-13
ECSTST=T o PO PPTT TSSO 6-7, 6-12
KSU ittt 4-16, 4-17, 4-18, 5-2, 6-6, 6-8, 6-9, 6-10, 6-11, 6-12, 6-13, C-14, C-15
U= o [PP 2-16, 6-1, 6-7, 6-12
L
0 RS PTR 3-4, 13-8, A-56, A-141, B-163, C-41, D-40
LBU .ttt ettt ettt b et Rt e ne e et e eaeeeneeanneenneennas 3-4, A-57, A-141, B-163, C-41, D-40
LD ettt b et b ettt nn e ee e e 3-4,13-8, A-5, A-58, A-141, B-163, C-41, D-40
[T3 RSSO 3-5, 3-21, 3-26, 10-13, A-141, B-163, C-41, D-25, D-40
[USSR 3-4, 3-8, A-59, A-60, A-63, A-141, B-163, C-41, D-40

X-10

X
TOSHIBA Index m rise”

LDR et 3-4, 3-8, A-59, A-63, A-64, A-141, B-163, C-41, D-40
LH 3-4, 13-8, A-67, A-141, B-102, B-163, C-41, D-40
LHU e 3-4, A-68, A-141, B-163, C-41, D-40
OO PP PP P PP PPPPPRRPPPPP 13-14, 13-15, 13-16, 13-18, 13-19
LINIK et r e e b et h e et e a b e e e s nna e e s 2-11, 3-17, 3-18, 4-4
PP PPPPP 1-2, 3-4, A-142, B-165, C-42, D-41
LD ettt e 1-2, 3-4, A-142, B-165, C-42, D-41
LO i 2-11, 2-14, 3-16, 3-22, 3-23, 3-24, 3-26, 4-1, 4-2, 4-3, 4-4, A-38, A-39, A-40, A-81, A-85,

A-86, A-87, B-2, B-5, B-11, B-13, B-23, B-25, B-66, B-67, B-68, B-70, B-84, B-85, B-86,
B-87, B-91, B-92, B-93, B-95, B-102, B-106, B-111, B-113, B-116, B-117, B-118, B-120,

B-122

[0 0PRSS 4-2, 4-3, 4-4, 6-16, B-2
LOL ..o, 2-11, 2-14, 4-2, 4-3, 4-4, 6-16, B-2, B-3, B-7, B-8, B-9, B-12, B-14, B-16, B-19, B-24, B-26
LoadMemoryccceeeeieniennnenn A-6, A-56, A-57, A-58, A-60, A-64, A-67, A-68, A-70, A-72, A-76, A-79, B-10
[0 T OSSPSR 2-17, 4-32, 5-11, C-11, C-12, C-13
[T (] T TSP TUURTPPPI 2-17
[oTo|Tor= 1 o1 o= TP UPTT ORI 2-10, 2-12, 2-13
0 R RTRR 3-5, 3-25, 13-8, A-141, B-4, B-10, B-163, C-41, D-40
LRI ettt bbbttt et be e ere e enee e e 4-32, 5-11, C-9, C-10, C-11, C-12, C-13
LU ettt ettt ee et e 3-14, 3-26, A-69, A-141, B-163, C-41, D-40
LWV e 3-4, A-5, A-70, A-141, B-102, B-116, B-163, C-41, D-40
LWECT ottt 3-5, 3-21, 3-26, 10-13, A-141, B-163, C-41, D-26, D-40
LMV C 2 ettt bbbt Rt n e bt e Rt e R et et e e be e ehe e eRe e eneeanbeebeenreeereas A-142, B-165, C-42, D-41
LWV ottt 3-4, 3-8, A-71, A-72, A-75, A-76, A-141, B-163, C-41, D-40
LWR Lottt 3-4, 3-8, A-71, A-72, A-75, A-76, A-141, B-163, C-41, D-40
[SR PTRRTR TSR 3-4, A-79, A-141, B-163, C-41, D-40
0 PP SRTRP 2-13, B-4, B-90
M

Y PSSRSO 2-11, 3-16, 3-22
YA 0 ST RTSUROTO 2-11, 2-12, 2-13
Y O S UP ST RTSURROTIOT 2-11, 2-12, 2-13
Y2 B SRR 3-23, 3-26, B-3, B-11, B-13, B-163
IMADDL ..ttt ettt sttt ettt ae e 2-14, 3-23, 3-26, 4-2, B-3, B-12, B-14, B-163
Y2 B O USRS UPRTT 3-23, 3-26, B-3, B-13, B-163
IMADDUL ...ttt ettt sttt et be e sae e e e ssb e et e e be e beesreenneea 2-14, 3-23, 3-26, 4-2, B-3, B-14, B-163
Maskccoerneeinenne 2-15, 2-19, 3-20, 4-5, 4-10, 4-16, 4-17, 4-27, 5-9, 5-24, 6-15, 13-3, 13-4, 13-7, 13-8, C-20,

C-22, C-24, C-30, C-32, C-34, C-39, C-40

Y] TP UROTURRRRTR 4-10, 6-16
IVIBSKADIE.......c ettt e e et e e e e a et e e e e R e e e e e b e e e e e b b e e e e ar e e e e anre e e e e arree e e e 5-8, 5-12
Y SRR URTUSPPROTN 2-18

X
TOSHIBA Index m rise”

Y1 PRSP R 6-2, 6-5, 6-12, 6-13, A-52, A-53
YO RSO STUSPPROTN C-41
IMEBPC ..ttt etk e bt h e e a e bt e Rt e Re e e et be e ebe e eheeeReeenbeanbeenre e 3-20, 13-4, C-17, C-41
1Y 0 TSR URT 3-20, 4-1, 9-3, 13-2, 13-4, C-18
IMIFEC L ettt h ettt b e h e e E e e R et e R bt e bt e ke e ehe e eneeeneeebe e eneesaeenneas 3-21, 10-13, D-27, D-40
Y AN = TSRO 3-20, 13-4, C-19, C-41
IMEDABIM ...ttt ettt ettt e s bt ekt s bt e bt ekt e eh e e e R et e bt e ebe e ehe e eReeenbe e beenbeeabeeereeas 3-20, 13-4, C-20, C-41
Y DAY TR 3-20, 13-4, C-21, C-41
IMEDVBIM ...ttt ettt e bt ekt s e et e e bt e e et e em et e be e ebe e she e eneeenbe e beenbeeareeareeas 3-20, 13-4, C-22, C-41
YT SRR SR 2-11, 3-16, A-80, A-81, A-141
IMFHIL ettt sttt et eeeneeenbeenneens 2-11, 2-14, 3-23, 4-2, B-3, B-15, B-163
Y VY = PSRRI 3-20, 13-4, C-23, C-41
LY VY = TSRS 3-20, 13-4, C-24, C-41
Y1 X USSP 3-16, 3-23, A-81, A-141
Y1 I USSR 2-14, 3-23, 4-2, B-3, B-16, B-163
Y O USSP 3-20, 9-2, 9-3, C-25, C-41
Y TSRS 3-20, 9-2, 9-3, C-26, C-41
IMESA ettt ettt b e ettt et nreeseee e 3-25, A-141, B-5, B-17, B-20, B-21, B-22
YL RSO URTUSPPROT 2-18
Y 172 U Te [=T PP POTUPUPPPTRP 3-8
0TIz 1o o]0 0 T=T o SO TP PUOUUUPPPTRPT C-8
0TS o] £=To [o1 1= o [P UURP TP 9-6, 9-7
Y TR UR R 2-17, 4-17, 6-4, 8-8, 9-7, 9-8, 12-6
TTIISSES ..ttt et e ettt e ettt e e ettt e oottt e oo b e oo E e e oo R b et e e ek R et e e e AR e e e e e R R et e oo e AR R e e e e e R b et e e e e R re e e anre e e e e nre e e e e nres 1-1, 6-17, 9-9
IMIMIL ettt ettt ettt et e e 5-22, A-141, B-163, B-164, B-165, C-41, D-40
IMIMILO <. etttk h e st s e et e ke ekt e e Rt e oAb e e eRe e SR e e oA et oA Re e ke e eReeeheeeRbeete e abeeeaeenneennnas B-163, B-164
Y RSP B-163, B-164
Y TR URTUR P B-163, B-165
Y USRI B-163, B-165
IMIMIU ettt b e b bkt a e a b et e bt e R et R et e nbe e ebe e eaeeaneeenee e 2-3, 2-15, 2-16, 4-5, 6-1, 6-14
10T BTSSP A-38, A-40, B-7, B-9, B-66, B-68, B-70
1Y@ L TRV OTRTSPRN 11-6, D-28
Y L@ 1o SRR URTUSPPROTN 10-8
Y L@ VA 113 ORI P 3-21, 10-14, D-41
IMIOVEL .ttt e e e e e e ettt e e e e e o e e et e e e e e e a e e e e e e et e e e e s e n e e e e 2-11
Y L@ Y TR 3-19, A-82, A-141
Y @ LY TR RP 3-19, A-83, A-141
Y O RSP UUROUR USSP C-41
MTBPC ..ttt ettt ettt te e ebe e saeesneeeneas 3-20, 13-4, 13-16, 13-19, C-27, C-41
Y 1 SRR 3-20, 4-1, 9-3, 13-2, 13-4, C-28

X
TOSHIBA Index m rise”

Y 1 SRR 3-21, 3-26, 10-13, D-29, D-40
IMTDAB ...ttt ettt ettt ettt he e bt e s bt e ee b e e st e e m bt ekt e eh et eh e e eR et e Rt e ebe e eheeeReeeneeeebeeareenneens 3-20, 13-4, C-29, C-41
IMTDABM ...ttt etttk b e b e sttt ekt em bt et e e skt e eh e e em et e ate e ebe e eheeeheeeRbeenbeenbeenbeenreens 3-20, 13-4, C-30, C-41
IMTDVB .ttt ettt ettt ettt b et sh e et e st e m bt ekt e eb e eh et em e e e ate e ebe e ebeeeaneenneebeeebeennens 3-20, 13-4, C-31, C-41
IMTDVBIM ...ttt ettt ettt b et e ettt ekt m e et e ekt eehe e em e e e nte e ebe e seeeseeesmbeanbeenbeenbeenneen 3-20, 13-4, C-32, C-41
Y I | TSRV TRPRPRN 2-11, 3-16, A-84, A-141
IMTTHIL L.ttt sttt ettt esbe e embeenbeesbeenneens 2-11, 2-14, 3-23, 4-2, B-3, B-18, B-163
Y Y = USRI 3-20, 13-4, C-33, C-41
IMTIABIM ...ttt ettt bt e bt e bttt e bt e et e e eh et eRe e e ate e ebe e ebeesaeeemeeenbeanbeennens 3-20, 13-4, C-34, C-41
Y X PRSP 3-16, A-85, A-141
Y X 1 PP 2-14, 3-23, 4-2, B-3, B-19, B-163
Y I = OSSPSR 3-20, 9-2, 9-3, C-35, C-41
Y I S TSRS URTURRURTR 3-20, 9-2, 9-3, C-36, C-41
Y Y TR 2-13, 3-25, A-141, B-5, B-17, B-20
MTSAB. ..ttt 2-13, 3-25, A-141, A-142, B-5, B-20, B-21, B-22, B-161
MTSAH ..o 2-13, 3-25, A-141, A-142, B-5, B-20, B-22, B-161
Y YN SRR UP TR TUSPPROTN B-20
1YL USSR 2-18, D-30
Y L0 {1 SRRSO 3-21, 10-14
Y L0 o 1 1 SRRSO TURPPROTN D-41
MULT et 3-16, 3-23, 3-26, A-80, A-86, A-87, A-141, B-3, B-23, B-25
IMULT L ettt ettt sttt ettt e e e e 2-14, 3-23, 3-26, 4-2, B-3, B-24, B-26, B-163
Y SRR 1-2
UL g F= T (=] S PP PP P PP PPPPPPPP 2-18, 8-2
MUIIMEAIAL ...t 1-1, 1-2, 2-3, 2-6, 3-2, 3-4, 3-5, 3-23
MUIEIMEIAL ..t 2-3, 2-14, 3-5, 3-22, 3-23, 3-24, 3-26, 4-2, B-1, B-3
multiply................. 2-14, 3-2, 3-4, 3-16, 3-22, 3-23, 4-1, 4-2, 4-4, A-8, A-86, A-87, A-125, B-11, B-12, B-13,

B-14, B-23, B-24, B-25, B-26, B-84, B-85, B-86, B-87, B-91, B-92, B-93, B-95, B-111, B-113,
B-118, B-120, B-122, C-16, D-30

Multiply................ 1-1, 1-2, 2-3, 2-6, 2-9, 2-11, 3-2, 3-14, 3-16, 3-21, 3-22, 3-23, 3-24, 3-26, 4-1, B-1, B-3, B-5
IMULT U ettt sttt eemb e e nbeebeenee e 3-16, 3-23, 3-26, A-87, A-141, B-3, B-25
IMULTUZL ettt sttt sb e e e nte e e e nbeennee 2-14, 3-23, 3-26, 4-2, B-3, B-26, B-163
N

N 1) USSR 10-11, 11-6, D-8, D-10, D-11, D-12, D-13
[N E= 1L PP TP PPPPPPRI 2-18
= TSR 4-23,5-11, C-28
N SO RRRT 2-18, 11-6, D-31
TR {11 RS RP 3-21, 10-14, D-41
[N =To T L= PP TR 3-21, 8-3, D-2, D-31, D-32, D-33
NMI e 4-17, 4-18, 4-19, 4-33, 5-2, 5-5, 5-7, 5-8, 5-9, 5-10, 5-12, 8-10, 8-13, 9-11, 12-6, C-14

X-13

X
TOSHIBA Index m rise”

NONMASKADIE ...ttt e ekt e e ekt e e s ekt e et e e e s et be e e e s nareeee e e 4-33
@] = OSSR 3-15, 3-25, A-3, A-88, A-141, B-4, B-124
[N [oTq 0 4 F=1 4= 11T o F PO OO OO PP PPRPPPPPN 2-9
N 1 RSSO UPR R 6-2, 13-8, 13-20, A-3, A-88, B-124
NotWordValue...... A-11, A-12, A-13, A-14, A-38, A-40, A-86, A-87, A-110, A-111, A-112, A-113, A-114, A-115,

B-7, B-9, B-11, B-12, B-13, B-14, B-23, B-24, B-25, B-26, B-68, B-70, B-93, B-95, B-113,
B-120, B-122

NullifyCurrentInStructioncccooeciiiieeieeenniiiiieeen, A-8, A-18, A-21, A-22, A-24, A-26, A-29, A-30, A-32, C-5
@)

(@1 171 PSR 6-4, 6-5, A-62, A-66, A-74, A-78, A-98, A-102, A-120, A-124
(o] oTole o [T PUPT TP 2-16, 3-9, 5-22, 6-1, A-2
OpCode................ 3-23, 3-24, 3-25, 6-20, 9-3, A-141, A-142, B-163, B-164, B-165, C-6, C-25, C-26, C-35,

C-36, C-41, C-42, D-40, D-41
(0] 0= o Lo F USSP 1-2, 3-14, 3-22, 3-23, A-104, B-1, B-3, D-1, D-4, D-31, D-35
(@] o =1 =1 o To SRR USUROPN 2-4, 3-14, 3-15, 3-23, B-3
OR..coovieieee 2-9, 3-14, 3-15, 3-25, A-3, A-88, A-89, A-90, A-139, A-140, A-141, B-4, B-124, B-125, B-160
(@] 3 SRR 3-14, A-90, A-141, B-163, C-41, D-40
@ SRR TRURURRIN 4-20, 5-8, 5-26
Overflow............... 2-9,4-30, 5-2, 5-8, 5-26, A-11, A-12, A-13, A-14, A-34, A-35, A-36, A-37, A-50, A-51, A-106,
A-107, A-108, A-109, A-114, B-31, B-35, B-37, B-39, B-42, B-44, B-144, B-148, B-150

OVERFLOW ...ttt ettt ettt ettt et a2t e et e o4t e eh e e ea et e Rt e e a ke e b e e ek e e eE et em et e mbe 2 be e eh e e em e e e msenbeebeeebeesneeenneannee e 5-5
L@ LY USSR 4-28, 4-30, 9-2, 9-10, 9-11
P

0]) RO OTRRTSPRN 12-3,12-4
POEXEB ...ttt ettt ettt ettt ekt e ekt e et e Rt ket R et ate ekt e eRe e eRe e eRe e eate e bt e ReeaReeaReeereeateeenneenteaaneens 12-3,12-4
PLEXEA .ttt ettt b bttt E e R et R et R bt ekt e ehe e oAt e oAt e oA te e Rt e be ekt e eReeebeeabeeereeanteeaneeas 12-3,12-4
PLEXEB ...ttt ettt ettt ettt b ettt R et R et Rt e R bt e Rt e ehe e SRt e oAt e oA te e bt e be ekt e eReeebeeabeearneenteeaneans 12-3,12-4
P et b bR et be bt e ehe e ne e te e abe e sae e e enee C-6, C-7, C-9, C-10, C-11, C-12
PABSH ...ttt ettt bt et e a e te e ebe e eaeeeneeenbeenre et e 3-24, B-4, B-27, B-164
PABSWV ...ttt etttk ke Rttt be e eR e e eRe e eRn e e bt ebe e ebeeeheeereeenbeenre e 3-24, B-4, B-28, B-164
PADDDB ...ttt ettt bt E e R bttt e bt e R et R et e ae e abe e ebeeeheeeneeenbeereennenes 3-24, B-3, B-29, B-164
PADDH. ...ttt ettt h ettt e bt e Rt e Rt e ne e ate e eheeeaeeaaeeenbeabeeneene 3-24, B-3, B-30, B-164
PADDSB ...ttt ettt ettt ettt e bt E bR bttt e eEe e Rt e e Rt e ae e ate e ebeeeaeeeneeanbeereereens 3-24, B-3, B-31, B-164
PADDSH ...ttt ettt b ettt e R ettt e abe e eaeeeaeeenneebeenreeaneens 3-24, B-3, B-35, B-164
PADDSWV ...ttt ettt h ettt bkt e Rt e et e e bt e ebe e she e eneeenbe e bt e beeareeareeas 3-24, B-3, B-37, B-164
PADDUB ...ttt ettt sttt ettt ekt ekt e bt h bt n bt e bt e Rt e e Rt e eaae e be e ebeeeheeeaeeenbeanbeereens 3-24, B-3, B-39, B-164
PADDUH ...ttt ettt b et e ettt ekttt e bt e ehe e ehe e e mee e be e ebe e eaeesneeenbeenbeenreens 3-24, B-3, B-42, B-164
PADDUW ...ttt ettt ettt b ettt s bt e be ekt eshe e em et e be e ebe e eheeeheeenbeenbe e beeabeeareeas 3-24, B-3, B-44, B-164
PADDWV ...ttt ettt ettt etttk ekt E et Rttt ekt e R e e eR et e nae e be e ebeeeaeeeReeenbeebeeneeens 3-24, B-3, B-46, B-164
PADSBH ...ttt b ettt h ettt e e eh et R ettt e ebe e ebeeeaeeeneeenbeenbeenneens 3-24, B-3, B-47, B-164

X
TOSHIBA Index m rise”

PAGE. ..o e 2-16, 4-8, 4-10, 6-16, 6-17, 9-7
PageMasKoooiiiiiii 2-15, 4-5, 4-10, 6-14, 6-15, 6-16, C-38, C-39, C-40
PAND Lo e e e 3-25, B-4, B-48, B-165
PC..os 1-2, 2-3, 2-6, 2-19, 3-16, 3-17, 3-18, 4-1, 4-3, 4-4,5-12, 9-10, 12-1, 12-2, 12-3, 12-5, 12-7,

12-8, 12-9, 12-10, 12-11, 12-12, 12-13, 12-14, 12-15, 12-16, 12-17, 12-18, 12-19, 12-20,
13-7, A-4, A-9, A-17, A-18, A-19, A-20, A-21, A-22, A-23, A-24, A-25, A-26, A-27, A-28,
A-29, A-30, A-31, A-32, A-52, A-53, A-54, A-55, C-2, C-3, C-4, C-5, C-16, D-6, D-7

O (=Tt T TSRS SUUPPRTN 1-2,2-19, 12-1, 12-3
[0 @] USROS 3-25, B-4, B-49, B-164
[0 @] SRR 3-25, B-4, B-52, B-164
[0 @ PSRRI 3-25, B-4, B-54, B-164
O I = TSRS 3-25, B-4, B-56, B-164
[0 I SRRSO 3-25, B-4, B-59, B-164
[0 ISP RRRR 3-25, B-4, B-61, B-164
[0 o TSRS 3-25, B-5, B-63, B-165
[0 = 4 I 5 TSRS 3-25, B-5, B-64, B-165
PCPYUD ...ttt ettt b ettt h e a bttt e e bt e eh et e R ettt e ebe e ehe e eaeeeneeenbeeebeenne s 3-25, B-5, B-65, B-165
PDIVBW ...ttt ettt ettt ettt sttt et et e b e e e e e nbe e seeesreeeneeenes 3-24, B-5, B-66, B-69, B-71, B-165
PDIVUW ..ttt ettt et h e et e bt et ekt e eb e e eh e e e me e e mte e ebe e ebeesaeeemeeebeeebeeanens 3-24, B-5, B-68, B-165
PDIVW L.ttt ettt ettt e e h e h e st e bt ekt e ek et eh et e R et e bt e ebe e eheeeRneeneeebeenreeenenns 3-24, B-5, B-70, B-165
= o SRRSO 2-15, 4-5
= (ST 4-19, 5-8, 5-13
Performance........ 1-2, 2-1, 2-15, 2-19, 3-20, 4-5, 4-17, 4-19, 4-28, 4-29, 4-30, 5-2, 5-5, 5-7, 5-8, 5-9, 5-10,
5-11, 5-13, 9-1, 9-2, 9-3, 9-4, 9-10, 12-6, C-25, C-26, C-35, C-36
(1S g el g aF= g (ot o s o] o 11 (o] TSP URT PRI 3-20
[(O TSRS 3-25, B-5, B-72, B-165
[O USRS 3-25, B-5, B-73, B-165
[1 SRR 3-25, B-5, B-74, B-165
[SRR 3-25, B-5, B-75, B-165
[TSRS 3-25, B-5, B-76, B-164
[= SRR 3-25, B-5, B-78, B-164
[I PSR TRPS 3-25, B-5, B-79, B-164
[I I TS UUSURPRTR 3-25, B-5, B-80, B-164
[I TSP RPST 3-25, B-5, B-81, B-164
PEXTUH ettt ettt ettt e et h bt e m bt e bt e ebe e eh et eme e e mae e be e ebeesaeesmeesnbeanbeenneens 3-25, B-5, B-82, B-164
PEXTUW .ttt ettt ettt ettt e et sttt e bt ekt eeh e e e me e e mbe e ebeesbeesseesmbeanbeanbeenbeenreens 3-25, B-5, B-83, B-164
PN et 2-15, 4-5, 4-8, 6-16, C-10, C-11, C-12, C-39, C-40
PHMADH ...ttt sttt bttt st e s b e s he e e mbeambe e beesbeeeneeenbeanneenneen 3-24, B-5, B-84, B-165
PHMSBH. ...ttt sttt ettt et e b et e st e e te e ebe e saeeeaeeenaeebeenbeeanens 3-24, B-5, B-86, B-165
PhySiCal....c..coiiiiiiiieeeee e 2-10, 2-15, 2-16, 4-5, 4-25, 6-3, 6-4, 6-18, A-4, A-6, A-7, C-7

X-15

X
TOSHIBA Index m rise”

PINTEH ...ttt ettt bbbt e e bt e e s ab e e e ebbe e eab e e e be e e sabe e e sbeeesnbeesneas 3-25, B-5, B-88, B-165
[1V I I O OO UPR T OU PR PRSPPSO 3-25, B-5, B-89, B-165
PLZECW ettt ettt et ekt e bkt e e b et R b e et e e e eba e e e be e e nab e e enbe e e nas 3-25, B-4, B-90, B-163
PMADDHcooiiiiiiiiiiieeee e 3-24, B-5, B-91, B-94, B-96, B-112, B-114, B-119, B-121, B-123, B-165
PIMADDUW ...ttt bttt ae e b bt e e b e e e sab e e et et e ebb e e e be e e aabeesnbe e e aabeesnbeeennee 3-24, B-5, B-93, B-165
PIMADDWV ...ttt sttt b bt b ekt e e skt e e kb e e ekt e e b e e ah bt e e b b e e eab e e e be e e nabe e e beeenes 3-24, B-5, B-95, B-165
PIMAXH <tttk b e h bt e e eh e e bt e be e nabe e e nan e e nare e ennas 3-24, B-4, B-97, B-164
PIMAXWV ettt ettt ettt ekt e ek bt e e bt e ekt e e e Rt et e ek b e e et e e be e e na b e e e nar e e naneeennen 3-24, B-4, B-99, B-164
PIMIHI .tttk b e bt e e e bt sh b e e s b e et e e e nb e e e ae e e nnne e 3-24, B-5, B-101, B-165
PIMIFHL ..ottt h e b e bt a b e e b b e b e e e be e e s be e e nae e e anne e 3-24, B-5, B-102, B-163
PIMFLO ..ttt ettt ettt ke b e kb e bt eh b e e be et be e e be e e ane e nnbe e 3-24, B-5, B-106, B-165
PIMINH Lttt b e e skt e e ek e e e sab e e s be e e ebbe e e be e e sane e snbee e 3-24, B-4, B-107, B-164
PIMINWV ettt ettt btk et eh e e et e kb e e s be e e sab e e enbe e e sbbeeebeeennneens 3-24, B-4, B-109, B-164
PIMSIUBH. ...ttt ettt ettt e hb e e s it e e bt e e st e e be e e sabe e e ebbe e naneeenes 3-24, B-5, B-111, B-165
PIMSIUBW ...ttt ettt b ettt ekt e e bt e e ht e e s st e e ek bt e emb e e e be e e sabe e e eabeennreeenes 3-24, B-5, B-113, B-165
PIMTHI ettt ettt sttt a e et e e b b e e s be e e bb e e sabe e e ehbe e ebe e e rneenes 3-24, B-5, B-115, B-165
PIMTHL ..ttt ettt ettt h et e b e e e b e e e ebe e e sabe e nhbe e sbe e e re e s 3-24, B-5, B-116, B-163
(1Y 1 T PO UP R OURPTR 3-24, B-5, B-117, B-165
PIMULTH ettt bttt b ettt e be e e s bt e e e b b e e smbe e e beeesnbeeesbseesnneaans 3-24, B-5, B-118, B-165
PIMULTUW L.ttt sttt ettt s kbt et e ek b e e et e e e eab e e sabe e e abbeesnbeeannneens 3-24, B-5, B-120, B-165
PIMULTWV ittt sttt b e sttt ettt ekt e e bt e e skt e e skt e e eb b e e e be e e abb e e sabe e e saneesnneeans 3-24, B-5, B-122, B-165
PINOIR . .ttt ettt b et h e b etk bt ettt eehbe e b e e et be e e be e e nan e e nnbe e 3-25, B-4, B-124, B-165
101 1 =] SRRSO 4-9, A-92
POR et h bt h et Rt e eh e e s b e e et e e sabe e e be e e beeenee 3-25, B-4, B-125, B-165
PP ACS e b b e bt e bt e b b e s b e e be e na b e e ae e e nree e 3-25, B-5, B-126, B-164
PPACB ..ttt h bbbt et e eh e e e b e e be e e be e e be e e anee e 3-25, B-5, B-128, B-164
PPACH ...ttt bbb et e e be e na b be e e nree e 3-25, B-5, B-129, B-164
PPAGCWV .ttt b et bttt e e bbbt e e b et eh b e e abe e e ahb e e abe e e nareeabeean 3-25, B-5, B-130, B-164
] =To Y= PP PUPUPUPPPPRP 9-4
[T =10 [Tex 1 o] o RO TP PR 1-2, 2-3, 4-23, 9-7
[(=T [o1 1o o TP T PP PP PPPPPPPPPPPPPR 4-23
PREF ..t 3-19, 4-23, A-2, A-91, A-141, B-163, C-41, D-40
1= =101 o TP 5-19, A-91, A-92
PrefetCh.... ..o 1-1,1-2, 2-11, 2-17, 3-19, 8-8, 9-7, A-7, A-92
L (=1 G PO P OO PP PPPPPPRPPN 8-3
PREVH. ...ttt bttt b et bbbt e s h bt e bt e e ebb e e et e e e snb e e sbe e nare e 3-25, B-5, B-131, B-165
L] =4[TP U PP UPRTOUPROPION 2-15, 4-5, 4-22
][] LTSI 12-7
1AV (Yo T T TP 9-5,9-11, C-8
[T A1 (ST o T o ¢ To Lo [= TS PPTT PSPPI 9-5,9-11

X
TOSHIBA Index m rise”

(o] (0] o1 3-20, 4-6, 4-14, 5-17, 6-20
[O N 1A A 3-25, B-5, B-132, B-165
[SY10 (o Lo T 2-15, 4-5
PSEUAOCOMEeeiiiiiie ettt e e et e e e e e e e e iabaeeaaaa s A-1, A-2, A-3, A-4, A-6, A-8, B-2, D-2
[odSYC10 [0 [0 Toxo 1o [T A-3, A-4, A-6, B-2, D-2
LY I I 3-25, B-4, B-133, B-163
LY I VATV TN 3-25, B-4, B-134, B-165
LY I N 3-25, B-4, B-135, B-163
[T R ¥ Y o P 3-25, B-4, B-136, B-163
P S RAVIV et e e e et e et e e e a et a— e rat e araa e raa e aaaan 3-25, B-4, B-137, B-165
[T R ¥\ V1Y 3-25, B-4, B-138, B-163
[T I = [3-25, B-4, B-139, B-163
[T R I AT AV 3-25, B-4, B-140, B-165
[T AT N 3-25, B-4, B-141, B-163
[1 U1 = = T 3-24, B-3, B-142, B-164
(o1 U1 =] o T 3-24, B-3, B-143, B-164
P SUBSB ...ttt e et e et e e e a e e ea— e rata e arab e raaaaaaan 3-24, B-3, B-144, B-164
[U1 =3 = [T 3-24, B-3, B-148, B-164
P SUB SV ettt ettt e et e e et e e e et e e e e e ea— e rata e araa e e raa e aaran 3-24, B-3, B-150, B-164
[Y U1 =101 T 3-24, B-3, B-152, B-164
[Y U1 =10 1 3-24, B-3, B-155, B-164
(oY U1 = 1 A TN 3-24, B-3, B-157, B-164
[T U1 = L T 3-24, B-3, B-159, B-164
e = To | o TP PR 4-31, 4-32
[l N T 2-15, 4-5, 4-9
[l I = 7= 1T <P 4-9
[l I ST 4-9
[O] = 3-25, B-4, B-160, B-165
Q

L0] ST Y PPN 3-25, B-5, B-20, B-21, B-22, B-161, B-164
[0 =T 11-6
L@ T = 1o 111 o 1-2, 3-5, 3-8, 3-10, 3-12, 3-25, 8-9, B-4, B-5
L0 187 I 11V @] I A-7, B-10, B-162
L@ U][0111 o)V (=TT PP RUURTPPPRPPR 3-10, 3-12
(o [UT0] 1= o) AT UTTT TP 4-4, A-38, A-40, B-7, B-9
R

[300100 T 1-3
[10O TR 1-3, 6-2
(=1 [0 (0] 2 0 I 2-15, 4-5, 4-11, 6-2
RANAOM c.eeeiee e 2-15, 3-20, 4-5, 4-7, 4-11, 4-14, 5-11, 5-16, 5-17, 6-20, C-40

X-17

X
TOSHIBA Index m rise”

Refill....covveeiinee, 2-3, 2-17, 4-12, 4-14, 5-2, 5-7, 5-9, 5-16, 8-8, A-56, A-57, A-58, A-62, A-66, A-67, A-68,
A-70, A-74, A-78, A-79, A-93, A-94, A-98, A-102, A-103, A-116, A-120, A-124, B-10, B-162,
C-7, C-8, D-26, D-37

REGIMM ... 5-22, A-141, A-142, B-163, C-41, D-40
=T8[5 (= TP PP PP PP PPPPPPPPPPRPTN 10-2, 10-6, 11-2, 11-3, 11-8, 11-9
Register................ 2-5, 2-6, 2-8, 2-15, 3-14, 3-15, 3-17, 3-20, 3-25, 4-3, 4-4, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 4-11,

4-12, 4-13, 4-14, 4-15, 4-16, 4-17, 4-18, 4-19, 4-21, 4-22, 4-23, 4-25, 4-26, 4-27, 4-28,
4-29, 4-30, 4-32, 4-33, 5-8, 6-9, 6-10, 6-12, 6-16, 8-25, 9-2, 9-3, 9-4, 9-10, 10-7, 10-8, 10-
9, 13-2, 13-3, 13-4, 13-5, 13-7, 13-8, 13-9, A-3, A-4, A-5, A-9, A-54, B-3, B-5, B-161

(=70] (] T PSPPI 10-4
Registers....... 2-1, 2-3, 2-14, 2-15, 3-17, 4-1, 4-2, 4-3, 4-4, 4-5, 4-8, 4-26, 4-28, 4-31, 6-14, 9-2, 9-3, 9-4, 13-3
L A UPR TSRO 8-11, 8-14, 8-15
REGUEST. ...ttt ettt ettt ettt et ettt ettt ettt ettt sttt et st et ek et £ e £ e £k et E e RRe e e e e e e e eeeeaeaeaaaaaaaaaaaaaaaaaes 9-9
RS etttk b et h e e R bt eR bt oA Ee e b e e R et oAt e oA Rt e Ee e ehe e eRe e eRee oAbt e Re e Rt eR e e eRteebeeabeeereenneeenns 4-19, 5-8
RESEL...cuiiiiieieetee et 4-18, 4-19, 5-1, 5-2, 5-7, 5-8, 5-9, 5-10, 5-11, 8-11, 9-4, 12-6, 13-14
] TR TSR 5-11, 5-12, 8-11, 8-14
R ettt e bt et e Rt e R bt Ee e bt e Rt e R et eR et e ebe e eae e ereeeneeenbeere e e e 2-16, 4-20, 5-8, 5-22, 6-1
[Lo | PP PO TP PPTTPTTI 3-21
ROTALE .. eeiie et r e e e e st e e e e e e e e 3-25, B-5
L@ 11N 2 RO TURPRRON D-32
L@ LU 1N 2 I 111 TR 3-21, 10-14, D-41
ROUND W ...ttt ettt ettt ettt s e 22 bt e ke e eh et oA et o2 ee e eh e e 4E e e 4a e e e abe e b e e eb e e eh b e em bt embeeabesbeesaeesmbeanbeanbeenreeas D-33
L@ LU B AV o) SRR 3-21, 10-14, D-41
S0] = USROS 2-18, 3-26
S

LS USRS 4-29,9-2,9-5, 9-11
S SRRSO TRUSRRN 4-29, 9-5, 9-11
Y- TR 3-3, A-41, A-42, A-44, A-45, A-47, A-48, A-104, A-110, A-112, B-133, B-135, B-136, B-138,

B-139, B-141

SA 2-3,2-11, 2-12, 2-13, 2-14, 3-25, 4-1, 4-2, 4-3, 4-4, B-17, B-20, B-21, B-22, B-161
Saturateccooeevieeieeieeiene B-34, B-36, B-38, B-41, B-43, B-45, B-147, B-149, B-151, B-154, B-156, B-158
saturationcccceeeeeene B-3, B-31, B-35, B-37, B-39, B-42, B-44, B-144, B-148, B-150, B-152, B-155, B-157
ST 1 (0] 221 (0] o FO T PSP PP PP PPPPRRPPPP 3-24, B-3
] = SRR 3-4, A-93, A-141, B-163, C-41, D-40
S OSSR 1-2, 3-4, A-142, B-165, C-42, D-41
LSO B LRSI OURUSIN 1-2, 3-4, A-142, B-165, C-42, D-41
] B PRSP 3-4, 13-8, A-5, A-94, A-141, B-163, C-41, D-40
SDCL et 3-5, 3-21, 10-13, A-141, B-163, C-41, D-34, D-40
] B] SRR 3-4, 3-8, A-95, A-96, A-99, A-141, B-163, C-41, D-40

X-18

X
TOSHIBA Index m rise”

SDR ettt ne e 3-4, 3-8, A-95, A-99, A-100, A-141, B-163, C-41, D-40
S1=To [0 1=T o | PP UP PP PPUPPPPP 2-16, 4-9, 6-1, 6-8, 6-9, 13-9
EST=T0] 41T o TP PTPTPRPRPRTRPR 6-9, 6-10, 6-12
S Y=Taq =T o] gL (= I TP 3-4
Y= o111)Y, (=TT PPT R UPUPPPRPPR 3-10, 3-12
LT A 1= 1122 i o] o R T PP PP PP PPPPPTPI 3-19
Y= 1] o) =TT PPT T RUUPTPPPRPPR 3-10, 3-12
SH e 3-4, A-103, A-141, B-102, B-163, C-41, D-40
1] 1 1 ST RURURN 2-3, 2-11, 3-14, 3-15, 3-25, 3-26, 4-2, 4-4, B-4, B-5
S 11T TP PP PP P PP PRTTPPPPRPPPPPRPTN 2-3
L] 4181 o [0V TP TP PSP PPPPPTPPP 6-2
SIgN e, 2-7,2-9, 2-16, 3-4, 3-16, 3-17, 6-1, 6-3, 10-10, 10-11, 10-12, 13-8, A-11, A-12, A-13, A-14,

A-17, A-18, A-19, A-20, A-21, A-22, A-23, A-24, A-25, A-26, A-27, A-28, A-29, A-30, A-31,
A-32, A-35, A-36, A-38, A-39, A-40, A-44, A-45, A-46, A-56, A-57, A-58, A-60, A-64, A-67,
A-68, A-69, A-70, A-71, A-72, A-74, A-75, A-76, A-78, A-79, A-86, A-87, A-92, A-93, A-94,
A-96, A-99, A-100, A-103, A-104, A-105, A-107, A-108, A-110, A-111, A-112, A-113, A-114,
A-115, A-116, A-117, A-118, A-121, A-122, A-128, A-130, A-131, A-134, A-135, A-138,
B-7, B-9, B-10, B-11, B-12, B-13, B-14, B-23, B-24, B-25, B-26, B-68, B-70, B-93, B-95,
B-113, B-120, B-122, B-136, B-137, B-138, B-140, B-162, C-2, C-3, C-4, C-5, C-6, D-2,
D-14, D-27, D-31

sign_extend.......... A-11, A-12, A-13, A-14, A-17, A-18, A-19, A-20, A-21, A-22, A-23, A-24, A-25, A-26, A-27,
A-28, A-29, A-30, A-31, A-32, A-35, A-36, A-38, A-40, A-56, A-57, A-58, A-60, A-64, A-67,
A-68, A-69, A-70, A-72, A-76, A-79, A-92, A-93, A-94, A-96, A-100, A-103, A-104, A-105,
A-107, A-108, A-110, A-111, A-112, A-113, A-114, A-115, A-116, A-118, A-122, A-128,
A-130, A-131, A-134, A-135, A-138, B-10, B-162, C-2, C-3, C-4, C-5, D-14, D-27

S (o] 0 T= | TSRO PPRTT 8-3, 8-7, A-8

SignalException... A-8, A-11, A-12, A-33, A-34, A-35, A-50, A-58, A-67, A-68, A-70, A-79, A-94, A-103, A-114,
A-116, A-126, A-127, A-128, A-129, A-130, A-131, A-132, A-133, A-134, A-135, A-136,
A-137, A-138

SIO . 4-17, 4-18, 4-19, 4-33, 5-2, 5-5, 5-7, 5-8, 5-9, 5-10, 5-25, 8-10, 12-6, 13-8, C-14
ST 1] OO PP PP PPTPPTRI 8-10
] [TP UPT PP PPPPTPPPRPT 4-19, 5-25
Sl 12-10, 12-11, 12-12, 12-13, 12-14, 12-15, 12-16, 12-17, 12-18, 12-19, 12-20
] I PP PP PR PPPTTP 3-15, A-74, A-78, A-104, A-141
SV e e 3-15, A-74, A-78, A-105, A-141
ST e e e e s 3-15, A-82, A-83, A-106, A-141
ST 3-14, A-82, A-83, A-107, A-141, B-163, C-41, D-40
SLTIU e 3-14, A-82, A-83, A-108, A-141, B-163, C-41, D-40
ST U ettt e s 3-15, A-82, A-83, A-109, A-141

X
TOSHIBA Index m rise”

LS ST RR B-102
ST ToTe] o] 1T F SRR TP 2-17
SPECIAL ...ttt ae b e nnee s 5-22, A-9, A-141, B-163, C-41, D-40
LT USSR 3-5, 3-25, 13-8, A-141, B-4, B-162, B-163, C-41, D-40
10] = USROS 2-18, 3-26, D-35
10 = 8 I 111 SR OUR PRSPPI 3-21, 10-14, D-41
Y0 U= L= O TP UT O PP PP PTPRPRPRPRPRIR: 3-21
SOUBIMEROOT. ...ttt R 55 £ 55ttt st st e nn b e nnnnnes D-35
] = RSP OTRRUSRPRN 1-5, 4-16
L] NSRS 3-15, A-110, A-141
SRAV ettt et te e ehe e Rt et e e bt e beeebeeaaeeaaeeenbe et e eteenns 3-15, A-111, A-141
1] ISR 3-15, A-112, A-141
] IR ST TRTR 3-15, A-113, A-141
S]] o [T U 6-7, 6-10
RS =TT PP PUTRPPTR 6-6, 9-4
Status.....cceeeeeeenne 1-5, 2-15, 3-5, 3-20, 3-21, 4-5, 4-16, 4-17, 4-18, 4-21, 4-25, 4-29, 5-2, 5-5, 5-7, 5-9, 5-11,

5-12, 5-13, 5-14, 5-16, 5-19, 5-23, 5-24, 5-25, 6-2, 6-6, 6-8, 6-9, 6-10, 6-11, 6-12, 6-13,
8-25, 10-2, 10-4, 10-7, 10-8, 10-9, 11-2, 11-8, 11-9, 12-3, 12-4, 13-4, C-1, C-7, C-9, C-13,
C-14, C-15, C-16

STATUS ittt ettt ettt et e et et e e sbe e sheesabeembeenbeesbeesbeeeneeenteeneen 9-2, 9-10, 9-11, 12-6, 13-5, 13-6
5] (ST] o [T PR T TR PPPRP 2-6, 4-31
Y (=TT g1 a1 | 21 €SS PP PT RO C-10
LS (=T o] oo To [PPSO 1-2, 9-8, 9-10, B-20, B-21, B-22
StoreFPR.............. D-2, D-4, D-5, D-12, D-13, D-16, D-17, D-18, D-19, D-20, D-23, D-24, D-28, D-30, D-31,
D-32, D-33, D-35, D-36, D-38, D-39
SLOrEMEMONY ..ot A-7, A-93, A-94, A-96, A-100, A-103, A-116, A-118, A-122, B-162
SUB ettt ettt ettt ae e ebe e eae e sreeaneeenreens 2-18, 3-15, 5-26, A-114, A-141, D-36
101 101 OSSPSR 3-21, 10-14, D-41
10 o] (0] 011101 T TP PP PUPRPTPI 3-17
YU o FT=To [T=] o S PSP PPURRR 2-4, 6-17
TN o] 1 Tox FU ST UR TP 3-15, 3-21, 3-24, B-3, B-5
11U 2] USSR 3-15, A-114, A-115, A-141
SUPEIVISOE ..ttieteeeeee ittt et e e e e et be ettt a e e e e e sbb b be e e e e e e e s anbbebeeeaaeeaesnnbnneeeaans 4-18, 5-15, 6-10, 6-12, 9-11, 13-5, 13-14
Supervisor............ 2-16, 2-19, 4-17, 4-18, 4-29, 5-2, 5-15, 5-22, 5-23, 6-6, 6-7, 6-10, 6-12, 9-2, 13-5, 13-6,
C-1, C-14, C-15
SUPERVISOR ...ttt ettt ettt ettt e e 2t e £ he e ea e e o2 ae e e be e eh e e eh e e eR bt e mbe e bt e eb e e eh e e embeembe e ebeebeebeeabeeeneeenbeeneee e 9-5
1T LT =To [P 6-7, 6-10
S ettt bttt ettt nre e e e 3-4, A-5, A-116, A-141, B-163, C-41, D-40
SWCL.o it 3-5, 3-21, 10-13, 13-2, A-141, B-163, C-41, D-37, D-40
11 U STURTRP A-142, B-165, C-42, D-41

X
TOSHIBA Index m rise”

SWL ottt 3-4, 3-8, A-117, A-118, A-121, A-141, B-163, C-41, D-40
SWR ettt 3-4, 3-8, A-117, A-121, A-122, A-141, B-163, C-41, D-40
SYNC ..cooiiiieee 2-11, 2-12, 2-13, 3-19, 5-24, 6-17, 13-9, 13-16, 13-18, 13-20, A-125, A-141, C-13, C-27,
C-28, C-29, C-30, C-31, C-32, C-33, C-34, C-35, C-36, C-38, C-39, C-40

)Y el g o] T 14= 11T o H PP PPURPTN 2-11, 3-19
LTSRS URRRRN 4-20, 5-8, 5-20
) S TSROSO 8-3
SYSAACK ...ttt 8-3, 8-9, 8-12, 8-13, 8-14, 8-16, 8-19, 8-22, 8-25, 8-26, 8-27, 8-28, 8-29
SYSADDR. ...ttt ettt ettt h e e R et oA et oAbt R e e Rt e eR et R At ARt oA Ee ekt e eReeeReeenee et e eReeen bt enteereeaneas 8-3, 8-7
SY SASTART .ttt ettt ettt ettt ettt ebe e sae e sae e e b e e be e abeesteesraeaneean 8-3, 8-7, 8-9, 8-12, 8-13, 8-16, 8-19
) T TSR 8-3, 8-7
YY1t || OO P PR 4-20, 5-2, 5-8, 5-9
SYSCALL .ttt 2-11, 3-18, 4-4, 5-10, 5-20, 9-7, 9-8, A-126, A-141
SYSDACK.....ccootiiaieniieee 8-3, 8-10, 8-12, 8-13, 8-16, 8-17, 8-19, 8-20, 8-22, 8-25, 8-26, 8-27, 8-28, A-125
SY S AT A ettt ettt h ettt bt ehe e eRe e ene e e be e ehe e eaeeeaeennaeannas 8-3, 8-6, 8-7, 8-9, 8-16, 8-17
SY SDSTART ...ttt ettt 8-3, 8-10, 8-12, 8-13, 8-16, 8-17, 8-19, 8-20, 8-25
S T 2] TSRS 8-3
SYSTSIZE. ..ttt ettt ettt ettt neeas 8-3, 8-9, 8-12, 8-13, 8-16, 8-19
S 1T = S SRS 8-3
T

=T [SRS 2-6, 2-7, 2-15, 4-5, C-9, C-11, C-12, C-13
PRSPPI C-6
=T | RSP TRRR 2-15, 4-5, 4-31, 4-32
=T | | OO TSSP C-10, C-11
=T | o T RSO 2-15, 4-5, 4-31, 4-32
=T | USSR OPRTRURPRN C-9, C-10, C-11, C-12
1= To LU R PR 4-31, C-9, C-12
TANGEEAGAIESS. ...ttt ettt e e oo oottt e e e e e e oo a et bttt e e e e e e s e ababe e et e ae e e e e nbnbeeee e e e e nnnbaareaeaans C-10,C-11
LI = OO OUSRTSUPRRN 3-18, 5-27, 9-8, A-127, A-141
LI =0] SO OPROURRTRUPRRN 3-18, 5-27, 9-8, A-128, A-142
LI USROS SRRSO 3-18, 5-27, A-129, A-141
LI = PP RTRRRR 3-18, 5-27, A-130, A-142
LT =3 O PP PRTRTRRN 3-18, 5-27, A-131, A-142
LI =L RSP 3-18, 5-27, A-132, A-141
L0301 PRSP TRRR 4-13, 4-15, 4-16
TLB oo, 1-2, 2-3, 2-6, 2-7, 2-15, 2-16, 3-20, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 4-11, 4-12, 4-14, 4-17,

4-20, 4-29, 5-2, 5-7, 5-8, 5-9, 5-10, 5-11, 5-12, 5-16, 5-17, 5-18, 6-1, 6-2, 6-3, 6-4, 6-7,
6-8, 6-9, 6-12, 6-14, 6-15, 6-16, 6-17, 6-18, 6-19, 6-20, 12-6, A-6, A-56, A-57, A-58, A-62,
A-66, A-67, A-68, A-70, A-74, A-78, A-79, A-92, A-93, A-94, A-98, A-102, A-103, A-116,
A-120, A-124, B-10, B-162, C-6, C-7, C-8, C-28, C-37, C-38, C-39, C-40, D-26, D-37

X-21

X
TOSHIBA Index m rise”

I 2] =g =T T O OO P PP PP PPPRPON C-37
1 OSSR UURURRRRRIN 4-8, 4-20, 5-8, 5-16, 5-17
TLBP ettt et re e 3-20, 4-6, 5-17, 5-18, 6-2, 6-20, C-37, C-42
LI =] TR R ORRTR 2-13, 3-20, 4-6, 6-20, C-38, C-42
1T 2 1 USRS UURURRRRRIN 4-8, 4-20, 5-8, 5-16, 5-17
TLBWI .ottt ae e 2-13, 3-20, 4-6, 4-8, 6-20, C-28, C-38, C-39, C-42
TLBWR ..ttt ettt ae e 2-13, 3-20, 4-7, 4-8, 6-20, C-28, C-38, C-40, C-42
L1 USSP P USRI 3-18, 5-27, A-133, A-141
L1 1 SRR PRTRSN 3-18, 5-27, A-134, A-142
L1 1 L I SRR RPN 3-18, 5-27, A-135, A-142
L1 1 LSRR RPN 3-18, 5-27, A-136, A-141
L) SRR PUPRTRTSR 3-18, 5-27, A-137, A-141
L) SRRSO PRTRTR 3-18, 5-27, A-138, A-142
L1 = SRR PRSI 12-3,12-5, 12-6, 12-7
LI RSO RTRR 12-3,12-5, 12-6
LI PP PP PP 12-1, 12-2, 12-3
LU= 10 E7= Lod (o] o IR PP U PP OUPPPTPPPRPN 8-8, 8-10, 8-12, 8-14, 8-22
TIANSIALION ...ttt e e e 2-3, 6-2, 6-3, 6-4, 6-5, 6-18, 6-19, 6-20
LUz L0 = L] 1 PSP T PP UPR T PTPPP 4-9, 6-1, A-92
Trap..ccocoeveeeeieeennenn 2-11, 3-18, 4-20, 5-2, 5-8, 5-9, 5-10, 5-27, 9-8, A-127, A-128, A-129, A-130, A-131, A-132,
A-133, A-134, A-135, A-136, A-137, A-138

LI 7Y USRS 4-4,5-27,9-7
12 L[TP 13-9, 13-20
LI [o o = T TR 2-19, 13-6
] 0](] o), (=P PPT R UPTPPPRPPT 3-10, 3-12
TRUNC L. ettt ettt ettt ettt ettt ettt e s et e a bt ekt eeh e e eh e e ea e e e be ook e e eh e e eH e e embeem b e et e emeeemneeabeesbeesaeeeneeantas D-38
QLR LS 1N (O I 1o | USROS 3-21, 10-14, D-41
TRUNGC.W .ttt ettt e ekt e st e a bt e bt e sE et eh 2t ea et 2 et e ehe e 1R e e em e e e be e ehe e eheesmbeneeemneeabeesaeesneeameeantas D-39
LR L LN LV {1 TSRS 3-21, 10-14, D-41
U

U0 ettt b E e eh et R et oA te e Rt e Rt e eR et eR et e te e eReeeReeeReeenbe e teeteeeneeneeeneennen 4-29,9-2,9-5, 9-11
U TSR 4-29, 9-5, 9-11
LU O RSO RPUPRTR 9-7
[0 2 SRR PR 2-4,2-6, 2-7, 6-17, 9-9
unalignedccoooveeeieenie e 3-8, 13-8, A-59, A-63, A-71, A-74, A-75, A-78, A-95, A-99, A-117, A-121
uncached 1-1, 2-4,5-11, 5-12, 6-12, 6-16, 6-17, 8-12, 9-8, 9-9, 9-10, A-6, A-8, A-56, A-57, A-58, A-60,

A-64, A-67, A-68, A-70, A-72, A-76, A-79, A-91, A-92, A-93, A-94, A-96, A-100, A-103,
A-116, A-118, A-122, A-125, B-10, B-162, C-6, C-7
UNCACNE.......coiiiiiiiii it 2-4, 4-8, 4-24, 6-7, 6-17, 6-20, 8-8, 8-12, 9-7, 9-10
UndefinedResult .. A-8, A-11, A-12, A-13, A-14, A-38, A-40, A-86, A-87, A-110, A-111, A-112, A-113, A-114,

X-22

X
TOSHIBA Index m rise”

A-115, B-7, B-9, B-11, B-12, B-13, B-14, B-23, B-24, B-25, B-26, B-68, B-70, B-93, B-95,
B-113, B-120, B-122

underflow 2-9, B-29, B-30, B-31, B-35, B-37, B-46, B-47, B-142, B-143, B-144, B-148, B-150, B-152,
B-155, B-157, B-159

UNAErfIOW. ...cceeiiiiiieecieeeeee e B-31, B-35, B-37, B-144, B-148, B-150, B-152, B-155, B-157
UN DX ettt ettt ettt h e e et o a e ekt ekt e ke eh et eR et eR bt 2Rt e Ee e eR e e oA Rt eR et e Re e eRe e eReeeRee et enbeeabeeenee e A-39, B-8, B-67
UNMAPPE ..o 5-11, 5-12, 6-7, 6-12, 9-8, 9-10, 13-9, A-6, C-28, C-38, C-39, C-40
(8]0 F=T o] o= EO TP PPPTRP 6-7
UNSIGNEM.....eitiiiiiiiiieie et 3-4, 3-14, 3-15, 3-16, 3-18, 3-23, 3-24, B-3, B-5, B-158
U= T o [P P PP P PP PP PP PPPPPPPPPPPPN 6-7, 6-8, 6-9
LU) SRRSO B-102
V

1Y SRS SPRSTSRTR C-6, C-7, C-8, C-9, C-10, C-11, C-12
LY 1 SRR URUPROTRN C-9
WALUE ... ettt ettt ettt ettt et b e h e e e b e e h et e Rt e a bt e a bt e R e e e Ee e eR et eR Rt e be e ebe e eheeeRee et enaeebeenreea 4-28, 4-30, 9-2
RV U [o TP PPOPPRPON D-10
VAIUBFPR ...ttt ettt ettt e e st e bt e ebe e eae e e meeenbe e ebeesbeesaeesnneanbeantens D-4, D-12, D-13, D-16
LYy PRSI TSUROTOPN 3-6
LV USROS 4-9, 5-15, 6-4, 6-5
VPN 2.ttt ettt ettt ettt ekt e bt e R e Rt e oAb e R bt e bt e ke e ebeeeReeeneeenteeabeeareenaeanaeas 4-14, 6-16, C-39, C-40
W

LT 2 TSR URUPR PRI 2-4, 4-29, 8-15, 9-6, 9-9
Lo OSSR USRI 2-10, 2-11, 2-12, 2-13
{1 (=T TP PPPPTPPP 2-15, 4-5, 4-11
L 1= OSSR 2-15, 4-5, 4-7, 4-11, 5-11
WVORD .ttt ettt ettt he e e ae et e ekt e e b e R et e R bt n e e be e nbe e eneeenneete e e A-7, A-70, A-79, A-116, A-122
10T o= o) O TSP P PP PPPPPTON A-91
WWHEEDACK ...t sbe e 2-4,C-7,C-8, C-11, C-12, C-13
L 2 AN TSRO C-6, C-13
X

D (@] = USRS 3-15, 3-25, A-3, A-139, A-140, A-141, B-4, B-160
D (@] 4IPS 3-14, A-140, A-141, B-163, C-41, D-40

X-23

X
TOSHIBA Index m rise”

X-24

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

A. CPU Instruction Set Detalls

This appendix provides a detailed description of the operation of each instruction. The
instructions are listed in alphabetical order.

Exceptions that may occur due to the execution of each instruction are listed after the
description of each instruction. Descriptions of the immediate cause and manner of
handling exceptions are omitted from the instruction descriptions in this appendix.

Descriptions use a pseudocode notation explained in Section A.2.

For an overview of the instruction set, refer to Chapter 3 of the User’'s Manual.

A-1

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

A.1 Description of an Instruction

Each instruction description contains several sections that contain specific information
about the instruction. The following sections describe the contents of each section in detail.

A.1.1 Instruction Mnemonic and Name

The instruction mnemonic and name are printed as page headings for each page in the
instruction description.

A.1.2 Instruction Encoding Picture

The instruction word encoding is shown in pictorial form at the top of the instruction
description. The picture shows the values of all constant fields and the opcode names for
opcode fields in upper-case. It labels all variable fields with lower-case names that are
used in the instruction description. Fields that contain zeroes but are not named are
unused fields that are required to be zero.

A.1.3 Format

The assembler formats for the instruction and the architecture level at which the
instruction was originally defined are shown.

A.1.4 Purpose

This is a very short statement of the purpose of the instruction.

A.1.5 Description

If a one-line symbolic description of the instruction is feasible, it will appear immediately
to the right of the Description heading. The body of the section is a description of the
operation of the instruction in text, tables, and figures. This description complements the
high-level language description in the Operation section.

A.1.6 Restrictions

This section documents the restrictions on the instructions. Most restrictions fall in the
category of alignment requirements for memory addresses, valid values of operands, and
order of instructions necessary to gurantee correct execution.

A.1.7 Operation

This section describes the operation as pseudocode in a high-level language notation
resembling Pascal. The purpose of this section is to describe the operation of the
instruction clearly in a form with less ambiguity than prose.

A.1.8 Exceptions

This section lists the exceptions that can be caused by the operation of the instruction. It
omits exceptions that can be caused by instruction fetch, performance counters, and
breakpoints. It also omits exceptions that can be caused by asynchronous external events,
e.g. interrupts. Although the Bus Error exception may be caused by the operation of a load,
store or PREF instruction this section does not list Bus Error for load, store or PREF
instructions because the relationship between these instructions and external error
conditions, like Bus Error is asynchronous and implementation specific.

A-2

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

A.1.9 Programming Notes, Implementation Notes

These sections contain material that is useful for programmers and implementors
respectively but is not necessary to describe the instruction and does not belong in the
description sections.

A.2 Instruction Description Notation and Functions

The Operation sections of the instruction descriptions describe the operation performed by
each instruction using a high-level language notation, or pseudocode. Symbols, functions,
and structures used in the Operation sections are described here.

A.2.1.1 Pseudocode Language Statement Execution

Each of the high-level language statements in an operation description is executed in
sequential order (as modified by conditional and loop constructs).

A.2.1.2 Pseudocode Symbols
Special symbols used in the notation are described in Table A-1.

Table A-1. Symbols in Instruction Operation Statements

Symbol Meaning
- Assignment.
= # Tests for equality and inequality.
[Bit string concatenation.
X’ A y-bit string formed by y copies of the single-bit value x.
Xy..z Selection of bits y through z of bit string x.
+, - Two’s complement or floating point arithmetic: addition, subtraction.
* X Two’s complement or floating point multiplication (both used for either).
div Two’s complement integer division.
Mod Two’s complement modulo.
/ Floating point division.
< Two’s complement less than comparison.
Not Bit-wise logical NOT.
Nor Bit-wise logical NOR.
Xor Bit-wise logical XOR.
And Bit-wise logical AND.
or Bit-wise logical OR.
GPRLEN The length in bits (64 in the C790), of the CPU General Purpose Registers.
GPRI[X] CPU General Purpose Register x. The content of GPR[0] is always zero.
CPR]z, X] Coprocessor unit z, general register x.
CCR[z, X] Coprocessor unit z, control register x.
CPCOND|z] Coprocessor unit z condition signal.
BigEndian Big-endian made as configured at reset (O—Little, 1—Big) from core boundary signal.

TOSHIBA

X
Appendix A CPU Instruction Set Details mﬁﬁtcem

Symbol

Meaning

I+n:,
I-n:

This occurs as a prefix to operation description lines and functions as a label. It indicates
the instruction time during which the effects of the pseudocode lines appears to occur
(i.e., when the pseudocode is “executed”). Unless otherwise indicated, all effects of the
current instruction appear to occur during the instruction time of the current instruction.

No label is equivalent to a time label of “I.".

Sometimes effects of an instruction appear to occur either earlier or later-during the
instruction time of another instruction. When that happens, the instruction operation is
written in sections labeled with the instruction time, relative to the current instruction I, in
which the effect of that pseudocode appears to occur. For example, an instruction may
have a result that is not available until after the next instruction. Such an instruction will
have the portion of the instruction operation description that writes the result register in a
section labeled “|+1:".

The effect of pseudocode statements for the current instruction labeled “I+1:” appears to
occur “at the same time” as the effect of pseudocode statements labeled “I:” for the
following instruction. Within one pseudocode sequence the effects of the statements
takes place in order. However, between sequences of statements for different
instructions that occur “at the same time”, there is no order defined. Programs must not
depend on a particular order of evaluation between such sections.

PC

The Program Counter value. During the instruction time of an instruction this is the
address of the instruction word. The address of the instruction that occurs during the
next instruction time is determined by assigning a value to PC during an instruction time.
If no value is assigned to PC during instruction time by any pseudocode statement, it is
automatically incremented by 4 before the next instruction time. A taken branch assigns
the target address to PC during the instruction time of the instruction in the branch delay
slot.

PSIZE

The SIZE, number of bits, of Physical address in an implementation.

A.2.2 Definitions of Pseudocode Functions Used in
Instruction Descriptions

A variety of functions are used in the pseudocode employed in the instruction descriptions.
These functions are used to make the pseudocode more readable and also to abstract
implementation-specific behavior. These functions are defined in this section. Certain
additional functions specific to a particular coprocessor are described at the beginning of
the appendix for that coprocessor.

A.2.2.1 Coprocessor General Register Access Pseudocode Functions

Defined coprocessors, except for COPO, have instructions to exchange words and
doublewords and quadwords between coprocessor general registers and the rest of the
system. What a coprocessor does with a word or doubleword supplied to it, and how a
coprocessor supplies a word or doubleword, is defined by the coprocessor itself. The
functions are listed in Table A-2.

A-4

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

Table A-2. Coprocessor General Register Access Functions

COP_LW(z, rt, memword)

zZ: The coprocessor unit number.
rt: Coprocessor general register specifier.
Memword: A 32-bit word value supplied to the coprocessor.

This is the action taken by coprocessor z when supplied with a word from memory
during a load word operation. The action is coprocessor-specific. The typical action
would be to store the contents of memword in coprocessor general register rt.

COP_LD(z, rt, memdouble)

Z: The coprocessor unit number.
rt: Coprocessor general register specifier.
Memdouble: 64-bit doubleword value supplied to the coprocessor.

This is the action taken by coprocessor z when supplied with a doubleword from
memory during a load doubleword operation. The action is coprocessor-specific. The
typical action would be to store the contents of memdouble in coprocessor general

register rt.

Dataword — COP_SW(z, rt)
zZ: The coprocessor unit number.
rt: Coprocessor general register specifier.
Dataword: 32-bit word value.

This defines the action taken by coprocessor z to supply a word of data during a store
word operation. The action is coprocessor-specific. The typical action would be to
supply the contents of low-order word in coprocessor general register rt.

Datadouble « COP_SD(z, rt)

zZ: The coprocessor unit number.
rt: Coprocessor general register specifier.
Datadouble: 64-bit doubleword value.

This defines the action taken by coprocessor z to supply a doubleword of data during
a store doubleword operation. The action is coprocessor-specific. The typical action
would be to supply the contents of the doubleword coprocessor general register rt.

A-5

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

A.2.2.2 Load and Store Memory Pseudocode Functions

Regardless of byte-numbering order (endianness), the address of a halfword, word, or
doubleword is the smallest byte address among the bytes in the object. For a big-endian
ordering this is the most-significant byte; for a little-endian ordering this is the least-
significant byte.

In the operation description pseudocode for load and store operations, the functions listed
in Table A-3 are used to summarize the handling of virtual addresses and accessing
physical memory.

The size of the data item to be loaded or stored is passed in the AccessLength field. The
valid constant names and values are shown in Table A-4. The bytes within the addressed
unit of memory (quadword for 128-bit processors) which are used can be determined
directly from the AccessLength and the four low-order bits of the address.

Table A-3. Load and Store Functions

(pAddr, CCA) ~ AddressTranslation (vAddr, lorD, LorS)

pAddr: Physical Address.

CCA: Cache Coherence Algorithm: the method used to access caches and
memory and resolve the reference.

vAddr: Virtual Address.

lorD: Indicates whether access is for Instruction or Data.

LorS: Indicates whether access is for Load or Store

Translate a virtual address to a physical address and a cache coherence algorithm describing the
mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the reference is to Instructions or Data (lorD), find the
corresponding physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the
reference. If the virtual address is in one of the unmapped address spaces the physical address and
CCA are determined directly by the virtual address. If the virtual address is in one of the mapped
address spaces then the TLB is used to determine the physical address and access type; if the
required translation is not present in the TLB or the desired access is not permitted the function fails
and an exception is taken.

MemElem ~ LoadMemory (CCA, AccessLength, pAddr, vAddr, lorD)

MemElem: Data is returned in a fixed width with a natural alignment. The width is the
same size as the CPU general purpose register.

CCA: Cache Coherence Algorithm: the method used to access caches and
memory and resolve the reference.

AccesslLength: Length, in bytes, of access.

pAddr: Physical Address.

vAddr: Virtual Address.

lorD: Indicates whether access is for Instructions or Data.

Load a value from memory.

Uses the cache and main memory as specified in the Cache Coherence Algorithm (CCA) and the sort
of access (lorD) to find the contents of AccessLength memory bytes starting at physical location pAddr.
The data is returned in the fixed width naturally-aligned memory element (MemElem). The low-order
two, three, or four bits of the address and the AccessLength indicate which of the bytes within
MemElem needs to be given to the processor. If the memory access type of the reference is uncached
then only the referenced bytes are read from memory ad valid within the memory element. If the access
type is cached, and the data is not present in cache, an implementation specific size and alignment
block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, the block
is the entire memory element.

A-6

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

CCA: Cache Coherence Algorithm: the method used to access caches and
memory and resolve the reference.

AccessLength: Length, in bytes, of access.

MemElem: Data in the width and alignment of a memory element. The width is the
same size as the CPU general purpose register. For a partial-memory-
element store, only the bytes that will be stored must be valid.

pAddr: Physical Address.

vAddr: Virtual Address.

Store a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches
and main memory) as specified by the Cache Coherence Algorithm (CCA). The MemElem contains
the data for an aligned, fixed-width memory element, though only the bytes that will actually be stored
to memory need to be valid. The low-order four bits of pAddr and the AccessLength field indicates
which of the bytes within the MemElem data should actually be stored; only these bytes in memory will
be changed.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

CCA: Cache Coherence Algorithm: the method used to access caches and
memory and resolve the reference.

pAddr: Physical Address.

vAddr: Virtual Address.

DATA: Indicates that access is for DATA.

hint: Hint that indicates the possible use of the data

Prefetch data from memory.

Prefetch is an advisory instruction for which an implementation specific action is taken. The action
taken may increase performance but must not change the meaning of the program or alter
architecturally-visible state.

Table A-4. AccessLength Specifications for Loads / Stores

AccesslLength Value Meaning
name
QUADWORD 15 16 bytes (128 bits)
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 hits)

A-7

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

A.2.2.3 Miscellaneous Functions

Table A-5 describes additional miscellaneous functions for CPU instruction descriptions.

Table A-5. Miscellaneous Functions

SyncOperation (stype)
stype: Type of synchronization operation to be performed.

Based on the value of stype either a memory barrier operation is performed or a pipeline barrier
operation is performed.

In case of a memory barrier all pending loads and stores are retired. Loads are retired when the
destination register is written. Stores are retired when the stored data (in store buffers or write buffers) is
either stored in the data cache, or sent on the processor bus.

All uncached accelerated data gathering operation is terminated.

The uncached accelerated buffer is invalidated.

All bus read processes due to load/store/pref/cache instructions are completed.
All pending bus write processes in the write back buffer are completed.

In case of pipeline barrier all instructions prior to the barrier are completed before the instructions
following the barrier operation are fetched. Note that the barrier operation does not wait for any
instruction which was issued prior to the barrier operation but not retired (e.g., multiply, divide, multicycle
COP1 operations or a pending load which were issued prior to the pipeline barrier operation).

SignalException (Exception)
Exception; The exception condition that exists.
Signal an exception condition.

This will result in an exception that aborts the instruction. The instruction operation pseudocode will
never see a return from this function call.

UndefinedResult()
This function indicates that the result of the operation is undefined.

NullifyCurrentinstruction()
Nullify the current instruction.

This occurs during the instruction time for some instruction and that instruction is not executed further.
This appears for branch-likely instructions during the execution of the instruction in the delay slot and it
kills the instruction in the delay slot.

CoprocessorOperation (z, cop_fun)

Z: Coprocessor unit number

cop_fun: Coprocessor function from function field of instruction
Perform the specified Coprocessor operation.

A-8

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

A.3 CPU Instruction Formats

A CPU instruction is a single 32-bit aligned word. There are three instruction formats:

Immediate (I-type), Jump (J-type), and Register (R-type). These formats are shown in
Figure A-1 below:

I-Type (Immediate)
31 26 25 21 20 16 15 0

op rs rt immediate

6 5 5 16
J-Type (Jump)

31 26 25 0

op target

6 26

R-Type (Register)

31 26 25 21 20 16 15 11 10 6 5 0
op rs rt rd sa funct
6 5 5 5 5 6
op 6-bit primary operation code
rd 5-bit destination register specifier
rs 5-bit source register specifier
rt 5-bit target (source/destination) register specification or

branch condition

immediate 16-bit signed immediate used for: logical operands, arithmetic
signed operands, load/store address byte offsets, PC-relative
branch signed instruction displacement

target 26-bit index shifted left two bits to supply the low-order 28 bits
of the jump target address.

sa 5-bit shift amount

funct 6-bit function field used to specify functions within the primary

operation code value SPECIAL

Figure A-1. CPU Instruction Formats

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

A.4 Instruction Descriptions

The user-level CPU instructions are described in alphabetical order in this section.

A-10

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

ADD Add Word ADD

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADD
000000 s rt rd 00000 | 100000
6 5 5 5 5 6
MIPS |

Format: ADD rd, rs, 1t
Purpose: To add 32-bit integers. If overflow occurs, then trap.
Description: rd « rs+rt

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result. If the addition results in 32-bit 2's complement arithmetic overflow then the
destination register is not modified and an Integer Overflow exception occurs. If it does
not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation is undefined.

Operation:

If (NotWordValue (GPR[rs] s3.0) or NotWordValue (GPR][rt] e3.0)) then UndefinedResult()endif
temp — GPRI[rs] 3.0 + GPR[rt] 63.0
if (32_bit_arithmetic_overflow) then
SignalException (IntegerOverflow)
else
GPRJrd]es.0 « sign_extend (tempaz.o)
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but, does not trap on overflow.

A-11

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

ADDI Add Immediate Word ADDl

31 26 25 21 20 16 15 0
ADDI : ,
001000 rs rt immediate
6 5 5 16
MIPS |

Format: ADDI rt, rs, immediate

Purpose: To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: rt — rs + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs to produce a 32-bit
result. If the addition results in 32-bit 2's complement arithmetic overflow then the
destination register is not modified and an Integer Overflow exception occurs. If it does
not overflow, the 32-bit result is placed into GPR rt.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result
of the operation is undefined.

Operation:

if (NotWordValue (GPR][rs] s3.0)) then UndefinedResult() endif
temp — GPR[rs]es.0 + sign_extend (immediate)
if (32_bit_arithmetic_overflow) then
SignalException (IntegerOverflow)
else
GPR]rt]es.0 « sign_extend (tempazz1.0)
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but, does not trap on overflow.

A-12

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

A D Dl U Add Immediate Unsigned Word A D Dl U

31 26 25 21 20 16 15 0
ADDIU : ,
001001 rs rt immediate
6 5 5 16
MIPS |

Format: ADDIU rt, rs, immediate
Purpose: To add a constant to a 32-bit integer.
Description: rt — rs + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit
arithmetic result is placed into GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result
of the operation is undefined.

Operation:

if (NotWordValue (GPR]rs] 63.0)) then UndefinedResult() endif
temp — GPR[rs]es.0 + sign_extend (immediate)
GPRJrt] s3.0 « sign_extend (tempsz..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit
modulo arithmetic that does not trap on overflow. It is appropriate for arithmetic which is
not signed, such as address arithmetic, or integer arithmetic environments that ignore
overflow, such as C language arithmetic.

A-13

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

ADDU Add Unsigned Word ADDU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADDU
000000 s rt rd 00000 | 100001
6 5 5 5 5 6
MIPS |

Format: ADDU rd, rs, rt
Purpose: To add 32-bit integers.
Description: rd — rs+rt

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit
arithmetic result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:
If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation is undefined.

Operation:

if (NotWordValue (GPR]rs] s3..0) or NotWordValue (GPR][rt] 63.0)) then UndefinedResult() endif
temp « GPR[rs]es.0 + GPR[rt] es.0
GPRJrt] s3.0 «sign_extend (tempaz..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit
modulo arithmetic that does not trap on overflow. It is appropriate for arithmetic which is
not signed, such as address arithmetic, or integer arithmetic environments that ignore
overflow, such as C language arithmetic.

A-14

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

AND And AND
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s t d 0 AND
000000 00000 100100
6 5 5 5 5 6
MIPS |

Format: AND rd, rs, rt
Purpose: To do a bitwise logical AND.
Description: rd —« rs AND rt

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND
operation. The result is placed into GPR rd.

Restrictions:

None
Operation:

GPRJ[rd] 63.0 « GPR]rs] 3.0 and GPR]rt] 63..0
Exceptions:

None

Programming Notes:

None

A-15

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

ANDI And Immediate ANDl

31 26 25 21 20 16 15 0
ANDI : ,
001100 rs rt immediate
6 5 5 16
MIPS |

Format: ANDI rt, rs, immediate

Purpose: To do a bitwise logical AND with a constant.
Description: rt —« rs AND immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR
rs in a bitwise logical AND operation. The result is placed into GPR rt.

Restrictions:

None

Operation:
GPRJrt] s3.0 « zero_extend (immediate) and GPR[rs] e3.0
Exceptions:

None

Programming Notes:

None

A-16

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

B EQ Branch on Equal B EQ

31 26 25 21 20 16 15 0
BEQ
000100 rs rt offset
6 5 5 16
MIPS |

Format: BEQ rs, rt, offset

Purpose: To compare GPRs then do a PC-relative conditional branch.

Description: if (rs = rt) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the effective target address after
the instruction in the delay slot is executed.

Restriction:

None

Operation:

I tgt _offset — sign_extend (offset || 0%)
condition « (GPR]rs]es.0 = GPR[rt] e3.0)
[+1: if condition then
PC ~ PC + tgt_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

A-17

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

B EQL Branch on Equal Likely B EQL

31 26 25 21 20 16 15 0
BEQL
010100 rs rt offset
6 5 5 16
MIPS I
Format: BEQL rs, rt, offset
Purpose: To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if

the branch is taken.

Description: if (rs = rt) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the
delay slot is not executed.

Restrictions:

None

Operation:

I tgt _offset — sign_extend (offset || 0%)
condition « (GPR]rs]es.0 = GPR[rt] e3.0)
[+1: if condition then
PC ~ PC + tgt_offset
else
NullifyCurrentlnstruction()
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

A-18

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

BGEZ Branch on Greater Than or Equal to Zero BGEZ

31 26 25 21 20 16 15 0
REGIMM s BGEZ offset
000001 00001
6 5 5 16
MIPS |

Format: BGEZ rs, offset
Purpose: To test a GPR then do a PC-relative conditional branch.
Description: if (rs = 0) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the
effective target address after the instruction in the delay slot is executed.

Restrictions:

None

Operation:

I: tgt offset — sign_extend (offset || 0%)
condition — GPR[rs]e3.0 = QGPRLEN
[+1: if condition then
PC ~ PC + tgt_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

A-19

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

B G EZAL Branch on Greater Than or Equal to Zero and Link B G EZAL

31 26 25 21 20 16 15 0
REGIMM s BGEZAL offset
000001 10001
6 5 5 16
MIPS |

Format: BGEZAL rs, offset
Purpose: To test a GPR then do a PC-relative conditional procedure call.
Description: if (rs = 0) then procedure_call

Place the return address link in GPR 31. The return link is the address of the second
instruction following the branch, where execution would continue after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the
effective target address after the instruction in the delay slot is executed.

Restriction:

GPR 31 must not be used for the source register rs, because such an instruction does not
have the same effect when re-executed. The result of executing such an instruction is
undefined. This restriction permits an exception handler to resume execution by re-
executing the branch when an exception occurs in the branch delay slot.

Operation:

I: tgt offset — sign_extend (offset || 0%)
condition « GPR[rs] 3.0 = QGPRLEN
GPR[31]63.0 ~ zero_extend (PC+8)

[+1: if condition then

PC ~ PC + tgt_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KB. Use
jump and link (JAL) or jump and link register (JALR) instructions for procedure calls to
more distant addresses.

A-20

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

B G EZAL L Branch on Greater Th?_?k(;yEqual to Zero and Link B G EZAL L

31 26 25 21 20 16 15 0
REGIMM s BGEZALL offset
000001 10011
6 5 5 16
MIPS I
Format: BGEZALL rs, offset
Purpose: To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only

if the branch is taken.

Description: if (rs = 0) then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second
instruction following the branch, where execution would continue after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the
effective target address after the instruction in the delay slot is executed. If the branch is
not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not
have the same effect when re-executed. The result of executing such an instruction is
undefined. This restriction permits an exception handler to resume execution by re-
executing the branch when an exception occurs in the branch delay slot.

Operation:

I: tgt offset — sign_extend (offset || 0%)
condition « GPR[rs] 3.0 = QGPRLEN
GPR[31]63.0 « zero_extend (PC+8)

[+1: if condition then

PC ~ PC + tgt_offset
else

NullifyCurrentlnstruction()
endif

Exceptions:

None
Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is + 128 KB. Use

jump and link (JAL) or jump and link register (JALR) instructions for procedure calls to
more distant addresses.

A-21

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

B G EZ L Branch on Greater Than or Equal to Zero Likely B G EZ L

31 26 25 21 20 16 15 0
REGIMM BGEZL
000001 s 00011 offset
6 5 5 16
MIPS I
Format: BGEZL rs, offset
Purpose: To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the

branch is taken.

Description: if (rs = 0) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the
effective target address after the instruction in the delay slot is executed. If the branch is
not taken, the instruction in the delay slot is not executed.

Restrictions:

None

Operation:
I: tgt offset — sign_extend (offset || 0%)
condition « GPR[rs] 3.0 = OGPRLEN
[+1: if condition then
PC ~ PC + tgt_offset
else
NullifyCurrentlnstruction()
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

A-22

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

BGTZ Branch on Greater Than Zero BGTZ

31 26 25 21 20 16 15 0
BGTZ rs 0 offset
000111 00000
6 5 5 16
MIPS |

Format: BGTZ rs, offset

Purpose: To test a GPR then do a PC-relative conditional branch.

Description: if (rs > 0) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to
the effective target address after the instruction in the delay slot is executed.

Restrictions:

None

Operation:

I tgt _offset — sign_extend (offset || 0%)
condition « GPR[rs]es.0 > QGPRLEN
[+1: if condition then
PC ~ PC + tgt_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

A-23

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

B GTZL Branch on Greater Than Zero Likely B GTZL

31 26 25 21 20 16 15 0
BGTZL rs 0 offset
010111 00000
6 5 5 16
MIPS I
Format: BGTZL rs, offset
Purpose: To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the

branch is taken.

Description: if (rs > 0) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to
the effective target address after the instruction in the delay slot is executed. If the branch
is not taken, the instruction in the delay slot is not executed.

Restrictions:

None

Operations:
I tgt _offset — sign_extend (offset || 0%)
condition « GPR[rs]es.0 > QGPRLEN
[+1: if condition then
PC ~ PC + tgt_offset
else
NullifyCurrentlnstruction()
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch is £ 128 KB. Use jump (J)
or jump register (JR) instructions to branch to more distant addresses.

A-24

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

BLEZ Branch on Less Than or Equal to Zero BLEZ

31 26 25 21 20 16 15 0
BLEZ rs 0 offset
000110 00000
6 5 5 16
MIPS |

Format: BLEZ rs, offset

Purpose: To test a GPR then do a PC-relative conditional branch.

Description: if (rs < 0) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of the GPR rs are less than or equal to zero (sign bit is 1 or value is zero),
branch to the effective target address after the instruction in the delay slot is executed.

Restrictions:

None

Operation:

I: tgt offset — sign_extend (offset || 0%)
condition « GPR[rs] 3.0 < OGPRLEN
[+1: if condition then
PC ~ PC + tgt_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

A-25

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

B L EZL Branch on Less Than or Equal to Zero Likely B |_ EZL

31 26 25 21 20 16 15 0
BLEZL rs 0 offset
010110 00000
6 5 5 16
MIPS I
Format: BLEZL rs, offset
Purpose: To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the

branch is taken.

Description: if (rs < 0) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero),
branch to the effective target address after the instruction in the delay slot is executed. If
the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

None

Operation:

I: tgt offset — sign_extend (offset || 0%)
condition « GPR[rs] es.0 < QGPRLEN
[+1: if condition then
PC ~ PC + tgt_offset
else
NullifyCurrentlnstruction()
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

A-26

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

B LTZ Branch on Less Than Zero B LTZ

31 26 25 21 20 16 15 0
REGIMM BLTZ
000001 s 00000 offset
6 5 5 16
MIPS |

Format: BLTZ rs, offset
Purpose: To test a GPR then do a PC-relative conditional branch.
Description: if (rs < 0) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

None

Operation:

I tgt_offset — sign_extend (offset || 0%)
condition « GPR[rs]es.0o < QGPRLEN
[+1: if condition then
PC ~ PC + tgt_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

A-27

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

BLTZAL Branch on Less Than Zero and Link BLTZAL

31 26 25 21 20 16 15 0
REGIMM s BLTZAL offset
000001 10000
6 5 5 16
MIPS |

Format: BLTZAL rs, offset
Purpose: To test a GPR then do a PC-relative conditional procedure call.
Description: if (rs < 0) then procedure_call

Place the return address link in GPR 31. The return link is the address of the second

instruction following the branch (not the branch itself), where execution would continue
after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch, in the branch delay slot, to form a PC-relative
effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not
have the same effect when re-executed. The result of executing such an instruction is
undefined. This restriction permits an exception handler to resume execution by re-
executing the branch when an exception occurs in the branch delay slot.

Operation:

I: tgt offset — sign_extend (offset || 09)
condition —« GPR[rs]es.0 < OGPRLEN
GPR[31]63.0 « zero_extend (PC+8)

[+1: if condition then

PC ~ PC + tgt_offset
endif

Exceptions:

None
Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is + 128 KB. Use

jump and link (JAL) or jump and link register (JALR) instructions for procedure calls to
more distant addresses.

A-28

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

BLTZALL Branch on Less Than Zero and Link Likely BLTZALL

31 26 25 21 20 16 15 0
REGIMM s BLTZALL offset
000001 10010
6 5 5 16
MIPS I
Format: BLTZALL rs, offset
Purpose: To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only

if the branch is taken.

Description: if (rs < 0) then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second
instruction following the branch (not the branch itself), where execution would continue
after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch, in the branch delay slot, to form a PC-relative
effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the
instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not
have the same effect when re-executed. The result of executing such an instruction is
undefined. This restriction permits an exception handler to resume execution by re-
executing the branch when an exception occurs in the branch delay slot.

Operation:

I: tgt offset~ sign_extend (offset || 02)
condition « GPR[rs]es.0 < OGPRLEN
GPR[31]63.0 « zero_extend (PC+8)

[+1: if condition then

PC ~ PC + tgt_offset
else

NullifyCurrentlnstruction()
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range + 128 KB. Use jump
and link (JAL) or jump and link register (JALR) instructions for procedure calls to more
distant addresses.

A-29

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

BLTZL Branch on Less Than Zero Likely BLTZL

31 26 25 21 20 16 15 0
REGIMM s BLTZL offset
000001 00010
6 5 5 16
MIPS I
Format: BLTZL rs, offset
Purpose: To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the

branch is taken.

Description: if (rs < 0) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the
instruction in the delay slot is not executed.

Restrictions:

None

Operation:
I tgt _offset — sign_extend (offset || 0%)
condition « GPR[rs]es.0 < QGPRLEN
[+1: if condition then
PC ~ PC + tgt_offset
else
NullifyCurrentlnstruction()
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

A-30

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

BNE Branch on Not Equal BNE

31 26 25 21 20 16 15 0
BNE
rs rt
000101 offset
6 5 5 16
MIPS |

Format: BNE rs, 1, offset

Purpose: To compare GPRs then do a PC-relative conditional branch.

Description: if (rs # rt) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address
after the instruction in the delay slot is executed.

Restrictions:

None

Operation:

I: tgt offset — sign_extend (offset || 0%)
condition ~ (GPR[rs] 3.0 # GPR[rt] 63.0)
I+1: if condition then
PC ~ PC + tgt_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

A-31

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

BNEL Branch on Not Equal Likely BNEL

31 26 25 21 20 16 15 0
BNEL
rs rt
010101 offset
6 5 5 16
MIPS I
Format: BNEL rs, rt, offset
Purpose: To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if

the branch is taken.

Description: if (rs # rt) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of
the instruction following the branch (not the branch itself), in the branch delay slot, to
form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address

after the instruction in the delay slot is executed. If the branch is not taken, the
instruction in the delay slot is not executed.

Restrictions:

None

Operation:

I: tgt offset — sign_extend (offset || 0%)
condition ~ (GPR[rs] 3.0 # GPR[rt] 63.0)
I+1: if condition then
PC ~ PC + tgt_offset
else
NullifyCurrentlnstruction()
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KB. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

A-32

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

BREAK Breakpoint BREAK

31 26 25 6 5 0
SPECIAL BREAK
000000 code 001101
6 20 6
MIPS |

Format: BREAK
Purpose: To cause a Breakpoint exception.
Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to
the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction.

Restrictions:

None

Operation:
SignalException (Breakpoint)
Exceptions:

Breakpoint

Programming Notes:

None

A-33

TOSHIBA

X
Appendix A CPU Instruction Set Details mﬁﬁtcem

DADD

Doubleword Add

DADD

MIPS lI

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s t d 0 DADD
000000 00000 101100
6 5 5 5 5 6
Format: DADD rd, rs, rt
Purpose: To add 64-bit integers. If overflow occurs, then trap.

Description:

rd — rs+rt

The 64-bit doubleword value in GPR rtis added to the 64-bit value in GPR rs to produce a
64-bit result. If the addition results in 64-bit 2’'s complement arithmetic overflow then the
destination register is not modified and an Integer Overflow exception occurs. If it does
not overflow, the 64-bit result is placed into GPR rd.

Restrictions:

None

Operation:

temp « GPR[rs]es.0 + GPR[rt] es.0

if (64_bit_arithmetic_overflow) then
SignalException (IntegerOverflow)

else

GPR[rd]es.0 — temp

endif
Exceptions:

Integer Overflow

Programming Notes:

DADDU performs the same arithmetic operation but, does not trap on overflow.

A-34

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DADDI Doubleword Add Immediate DADDI

31 26 25 21 20 16 15 0
DADDI rs rt immediate
011000
6 5 5 16
MIPS 1l

Format: DADDI rt, rs, immediate
Purpose: To add a constant to a 64-bit integer. If overflow occurs, then trap.
Description: rt — rs + immediate

The 16-bit signed immediate is added to the 64-bit value in GPR rs to produce a 64-bit
result. If the addition results in 64-bit 2's complement arithmetic overflow then the
destination register is not modified and an Integer Overflow exception occurs. If it does
not overflow, the 64-bit result is placed into GPR rt.

Restrictions:

None

Operation:

temp « GPR[rs]es.0 + sign_extend (immediate)
if (64_bit_arithmetic_overflow) then
SignalException (IntegerOverflow)
else
GPR[rt]63.0 — temp
endif

Exceptions:

Integer Overflow

Programming Notes:

DADDIU performs the same arithmetic operation but, does not trap on overflow.

A-35

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DADDIU Doubleword Add Immediate Unsigned DADDIU

31 26 25 21 20 16 15 0
DADDIU rs rt immediate
011001
6 5 5 16
MIPS 1l

Format: DADDIU rt, rs, immediate
Purpose: To add a constant to a 64-bit integer.
Description: rt — rs + immediate

The 16-bit signed immediate is added to the 64-bit value in GPR rs and the 64-bit
arithmetic result is placed into GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

GPRJrt] s3.0 « GPR]rs]ss.o + sign_extend (immediate)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit
modulo arithmetic that does not trap on overflow. It is appropriate for arithmetic which is
not signed, such as address arithmetic, or integer arithmetic environments that ignore
overflow, such as C language arithmetic.

A-36

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DADDU Doubleword Add Unsigned DADDU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s t d 0 DADDU
000000 00000 101101
6 5 5 5 5 6
MIPS 1l

Format: DADDU rd, rs, rt
Purpose: To add 64-bit integers.
Description: rd — rs+rt

The 64-bit doubleword value in GPR rt is added to the 64-bit value in GPR rs and the 64-
bit arithmetic result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

GPRJ[rd] 63.0 « GPR]rs] 3.0 + GPR[rt] 63.0
Exception:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit
modulo arithmetic that does not trap on overflow. It is appropriate for arithmetic which is
not signed, such as address arithmetic, or integer arithmetic environments that ignore
overflow, such as C language arithmetic.

A-37

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DIV Divide Word DIV

31 26 25 21 20 16 15 65 0
SPECIAL s t 0 DIV
000000 00 0000 0000 011010
6 5 5 10 6
MIPS |

Format: DIV rs, 1t
Purpose: To divide 32-bit signed integers.
Description: (LO,HI) « rs/rt

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both
operands as signed values. The 32-bit quotient is placed into special register LO and the
32-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation is undefined.

If the divisor in GPR rtis zero, the arithmetic result value is undefined.

Operation:

if (NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif
g ~ GPRIrs]si.0 div GPR[rt]s1.0

LOs3.0 « sign_extend (gs1.0)

r « GPR][rs]si.o mod GPR[rt]s1..0

Hles.o « sign_extend (rs1.o)

Exceptions:
None
Supplementary Explanation:

Normally, when 0x80000000 (-2147483648) the signed minimum value is divided by
OXFFFFFFFF (-1), the operation will result in an overflow. However, in this instruction an
overflow exception doesn't occur and the result will be as follows:

Quotient is 0x80000000 (-2147483648), and remainder is 0x00000000 (0).

This sign of the quotient and the remainder is based on the signs of the dividend and the
divisor as shown in the table below:

A-38

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

Dividend Divisor Quotient Remainder
Positive Positive Positive Positive
Positive Negative Negative Positive
Negative Positive Negative Negative
Negative Negative Positive Negative

Programming Notes:

In the C790, the integer divide operation proceeds asynchronously and allows other CPU
instructions to execute before it is retired. An attempt to read LO or HI before the results
are written will wait (interlock) until the results are ready. Asynchronous execution does
not affect the program result, but offers an opportunity for performance improvement by
scheduling the divide so that other instructions can execute in parallel.

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow
conditions should be detected and some action taken, then the divide instruction is
typically followed by additional instructions to check for a zero divisor and / or for overflow.
If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within
the program itself or more typically, the system software; one possibility is to take a
BREAK exception with a code field value to signal the problem to the system software.

As an example, the C programming language in a UNIX environment expects division by
zero to either terminate the program or execute a program-specified signal handler. C
does not expect overflow to cause any exceptional condition. If the C compiler uses a divide
instruction, it also emits code to test for a zero divisor and execute a BREAK instruction to
inform the operating system if one is detected.

In the C790, sign-extended 32-bit values (bits 63..31) are ignored on divide operation.

A-39

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DIVU Divide Unsigned Word DIVU

31 26 25 21 20 16 15 65 0
SPECIAL s t 0 DIVU
000000 00 0000 0000 011011
6 5 5 10 6
MIPS |

Format: DIVU rs, 1t
Purpose: To divide 32-bit unsigned integers.
Description: (LO,HI) « rs/rt

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both
operands as unsigned values. The 32-bit quotient is placed into special register LO and
the 32-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs do not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation is undefined.

If the divisor in GPR rtis zero, the arithmetic result is undefined.

Operation:

if (NotWordValue (GPR][rs]) or NotWordValue (GPR[rt])) then UndefinedResult() endif
g < (0| GPRIrs]si.0) div (O || GPR[rt]s1.0)
LOe63.0 « sign_extend (gz1.0)
r < (0| GPR[rs]s1.0) mod (O || GPR[rt]s1.0)
Hles.o ~ sign_extend (rs1.0)
Exceptions:

None

Programming Notes:

See the Programming Notes for the DIV instruction.

A-40

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DSLL Doubleword Shift Left Logical DSLL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 DSLL
000000 | 00000 t rd sa 111000
6 5 5 5 5 6
MIPS llI

Format: DSLL rd, rt, sa
Purpose: To left shift a doubleword by a fixed amount 00 0 to 31 bits.
Description: rd — rt<<sa

The 64-bit doubleword contents of GPR rt are shifted left, inserting zeros into the emptied
bits; the result is placed in GPR rd. The bit shift count in the range 0 to 31 is specified by
sa.

Restrictions:

None

Operation:

s < 0]lsa
GPR[rd]63.0 « GPR]rt]3-s).0 || 0°

Exceptions:

None

Programming Notes:

None

A-41

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DSLL32 Doubleword Shift Left Logical Plus 32 DSLL32

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 t rd sa DSLL32
000000 00000 111100
6 5 5 5 5 6
MIPS llI

Format: DSLL32 rd, rt, sa
Purpose: To left shift a doubleword by a fixed amount [0 32 to 63 bits.
Description: rd — rt<<(sa+ 32)

The 64-bit doubleword contents of GPR rt are shifted left, inserting zeros into the emptied
bits; the result is placed in GPR rd. The bit shift count in the range 32 to 63 is specified by
sa+ 32.

Restrictions:

None

Operation:

s <« 1]|sa /* 32 +sa*/
GPR[rd]e3.0 « GPR]rt]ess-s.0 || 0°

Exceptions:

None

Programming Notes:

None

A-42

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DSLLV Doubleword Shift Left Logical Variable DSLLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s t d 0 DSLLV
000000 00000 010100
6 5 5 5 5 6
MIPS 1l

Format: DSLLV rd, rt, rs
Purpose: To left shift a doubleword by a variable number of bits.
Description: rd « rt<<rs

The 64-bit doubleword contents of GPR rt are shifted left, inserting zeros into the emptied
bits; the result is placed in GPR rd. The bit shift count in the range 0 to 63 is specified by
the low-order six bits in GPR rs.

Restrictions:

None

Operation:

s « 0||GPR[rs]s.0
GPR[rd]63.0 « GPR]rt]ss-s).0]|0s
Exceptions:

None

Programming Notes:

None

A-43

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DSRA Doubleword Shift Right Arithmetic DSRA
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 DSRA
000000 | 00000 t rd sa 111011
6 5 5 5 5 6
MIPS llI
Format: DSRA rd, rt, sa
Purpose: To arithmetic right shift a doubleword by a fixed amount O 0 to 31 bits.
Description: rd —« rt>>sa (arithmetic)

The 64-bit doubleword contents of GPR rt are shifted right, duplicating the sign bit (63)
into the emptied bits; the result is placed in GPR rd. The bit shift count in the range 0 to
31 is specified by sa.

Restrictions:

None

Operation:

s «0f|sa
GPR[rd]es.0 « (GPR[rt]es)s || GPR[rt]s3.s

Exceptions:

None

Programming Notes:

None

A-44

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DSRA32 Doubleword Shift Right Arithmetic Plus 32 DSRA32

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 t rd sa DSRA32
000000 00000 111111
6 5 5 5 5 6
MIPS llI

Format: DSRA32 rd, rt, sa
Purpose: To arithmetic right shift a doubleword by a fixed amount [32-63 bits.
Description: rd « rt>>(sa+32) (arithmetic)

The doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the
emptied bits; the result is placed in GPR rd. The bit shift count in the range 32 to 63 is
specified by sa + 32.

Restrictions:

None

Operation:

s <1]|sa f*32+sa*/
GPR[rd]es.0 «(GPR[rt]es)s || GPR[rt]s3.s

Exceptions:

None

Programming Notes:

None

A-45

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DSRAV Doubleword Shift Right Arithmetic Variable DSRAV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s t d 0 DSRAV
000000 00000 010111
6 5 5 5 5 6
MIPS 1l

Format: DSRAV rd, rt, rs
Purpose: To arithmetic right shift a doubleword by a variable number of bits.
Description: rd « rt>>rs (arithmetic)

The doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the
emptied bits; the result is placed in GPR rd. The bit shift count in the range 0 to 63 is
specified by the low-order six bits in GPR rs.

Restrictions:

None

Operation:

s « GPR]rs]s.o
GPR[rd]es.0 « (GPRJrt]e3)s || GPR[rt]es.s

Exceptions:

None

Programming Notes:

None

A-46

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DSRL Doubleword Shift Right Logical DSRL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 DSRL
000000 | 00000 t rd sa 111010
6 5 5 5 5 6
MIPS llI

Format: DSRL rd, rt, sa
Purpose: To logical right shift a doubleword by a fixed amount O 0 to 31 bits.
Description: rd — rt>>sa (logical)

The doubleword contents of GPR rt are shifted right, inserting zeros into the emptied bits;
the result is placed in GPR rd. The bit shift count in the range 0 to 31 is specified by sa.

Restrictions:

None

Operation:

s « 0]lsa
GPR[rd]63.0 « 0% || GPR[rt]es.s

Exceptions:

None

Programming Notes:

None

A-47

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DSRL32 Doubleword Shift Right Logical Plus 32 DSRL32
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 t rd sa DSRL32
000000 00000 111110
6 5 5 5 5 6
MIPS llI

Format: DSRL32 rd, rt, sa
Purpose: To logical right shift a doubleword by a fixed amount O 32 to 63 bits.
Description: rd —« rt>>(sa+32) (logical)

The 64-bit doubleword contents of GPR rt are shifted right, inserting zeros into the
emptied bits; the result is placed in GPR rd. The bit shift count in the range 32 to 63 is
specified by sa + 32.

Restrictions:

None

Operation:

s <« 1]|sa [*32+sa*/
GPR[rd]es.0 « 0%| GPR[rt]es.s

Exceptions:

None

Programming Notes:

None

A-48

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DSRLV Doubleword Shift Right Logical Variable DSRLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s t d 0 DSRLV
000000 00000 010110
6 5 5 5 5 6
MIPS 1l

Format: DSRLV rd, rt, rs
Purpose: To logical right shift a doubleword by a variable number of bits.
Description: rd « rt>>rs (logical)

The 64-bit doubleword contents of GPR rt are shifted right, inserting zeros into the
emptied bits; the result is placed in GPR rd. The bit shift count in the range 0 to 63 is
specified by the low-order six bits in GPR rs.

Restrictions:

None

Operation:

s « GPR]rs]s.o
GPR[rd]e3.0 0% ||GPRJrt]es.s

Exceptions:

None

Programming Notes:

None

A-49

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DSUB Doubleword Subtract DSUB

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s t d 0 DSuUB
000000 00000 101110
6 5 5 5 5 6
MIPS 1l

Format: DSUB rd, rs, 1t
Purpose: To subtract 64-bit integers; trap if overflow.
Description: rd —« rs-rt

The 64-bit doubleword value in GPR rt is subtracted from the 64-bit value in GPR rs to
produce a 64-bit result. If the subtraction results in 64-bit 2's complement arithmetic
overflow then the destination register is not modified and an Integer Overflow exception
occurs. If it does not overflow, the 64-bit result is placed into GPR rd.

Restrictions:

None

Operation:

temp —~ GPRI[rs]es.0 - GPR[rt] 63.0
if (64_bit_arithmetic_overflow) then
SignalException (IntegerOverflow)
else
GPR[rd]es.0 — temp
endif

Exceptions:

Integer Overflow

Programming Notes:

DSUBU performs the same arithmetic operation but, does not trap on overflow.

A-50

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

DSUBU Doubleword Subtract Unsigned DSUBU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s t d 0 DSuBU
000000 00000 101111
6 5 5 5 5 6
MIPS 1l

Format: DSUBU rd, rs, rt
Purpose: To subtract 64-bit integers.
Description: rd —« rs-rt

The 64-bit doubleword value in GPR rt is subtracted from the 64-bit value in GPR rs and
the 64-bit arithmetic result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
GPRI[rd] es.0 « GPR][rs]es.0 - GPR[rt]es.o

Exceptions:
None

Programming Notes:
The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit
modulo arithmetic that does not trap on overflow. It is appropriate for arithmetic which is

not signed, such as address arithmetic, or integer arithmetic environments that ignore
overflow, such as C language arithmetic.

A-51

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

J Jump J

31 26 25 0
J . .
000010 instr_index
6 26
MIPS |
Format: J target
Purpose: To branch within the current 256 MB aligned region.
Description:

This is a PC-region branch (not PC-relative); the effective target address is in the
“current” 256 MB aligned region. The low 28 bits of the target address is the instr_index
field shifted left 2 bits. The remaining upper bits are the corresponding bits of the address
of the instruction in the delay slot (not the jump itself).

Jump to the effective target address. Execute the instruction following the jump, in the
branch delay slot, before jumping.

Restrictions:

None

Operation:

I

[+1: PC « PCasu.28 || instr_index || 02
Exceptions:

None

Programming Notes:

Forming the branch target address by concatenating PC and index bits rather than adding
a signed offset to the PC is an advantage if all program code addresses fit into a 256 MB
region aligned on a 256 MB boundary. It allows a branch to anywhere in the region from
anywhere in the region which a signed relative offset would not allow.

This definition creates the boundary case where the branch instruction is in the last word
of a 256 MB region and can therefore only branch to the following 256 MB region
containing the branch delay slot.

A-52

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

JAL Jump and Link JAL

31 26 25 0
JAL . .
000011 instr_index
6 26
MIPS |
Format: JAL target
Purpose: To procedure call within the current 256 MB aligned region.
Description:

Place the return address link in GPR 31. The return link is the address of the second
instruction following the branch, where execution would continue after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the
“current” 256 MB aligned region. The low 28 bits of the target address is the instr_index
field shifted left 2 bits. The remaining upper bits are the corresponding bits of the address
of the instruction in the delay slot (not the jump itself).

Jump to the effective target address. Execute the instruction following the jump, in the
branch delay slot, before jumping.

Restrictions:

None

Operation:
I: GPR[31]63.0 — zero_extend (PC + 8)
[+1: PC — PCasui.28 || instr_index || 02
Exceptions:

None

Programming Notes:

Forming the branch target address by concatenating PC and index bits rather than adding
a signed offset to the PC is an advantage if all program code addresses fit into a 256 MB
region aligned on a 256 MB boundary. It allows a branch to anywhere in the region from
anywhere in the region which a signed relative offset would not allow.

This definition creates the boundary case where the branch instruction is in the last word
of a 256 MB region and can therefore only branch to the following 256 MB region
containing the branch delay slot.

A-53

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

JALR Jump and Link Register JALR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s 0 rd 0 JALR
000000 00000 00000 001001
6 5 5 5 5 6
MIPS |
Format: JALR rs (rd = 31 implied)
JALR rd, rs
Purpose: To procedure call to an instruction address in a register.
Description: rd — return_addr, PC « rs

Place the return address link in GPR rd. The return link is the address of the second
instruction following the branch, where execution would continue after a procedure call.

Jump to the effective target address in GPR rs. Execute the instruction following the jump,
in the branch delay slot, before jumping.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have
the same effect when re-executed. The result of executing such an instruction is undefined.
This restriction permits an exception handler to resume execution by re-executing the
branch when an exception occurs in the branch delay slot.

The effective target address in GPR rs must be naturally aligned. If either of the two
least-significant bits are not -zero, then an Address Error exception occurs, not for the
jump instruction, but when the branch target is subsequently fetched as an instruction.

Operation:

I: temp ~ GPR]rs]si.0
GPRI[rd]es.0 — zero_extend (PC + 8)
[+1: PC ~ temp

Exceptions:

None

Programming Notes:

This is the only branch-and-link instruction that can select a register for the return link;
all other link instructions use GPR 31 The default register for GPR rd, if omitted in the
assembly language instruction, is GPR 31.

A-54

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

JR Jump Register JR

31 26 25 21 20 65 0
SPECIAL s 0 JR
000000 000 0000 0000 0000 001000
6 5 15 6
MIPS |

Format: JRrs
Purpose: To branch to an instruction address in a register.
Description: PC < rs

Jump to the effective target address in GPR rs. Execute the instruction following the jump,
in the branch delay slot, before jumping.

Restrictions:

The effective target address in GPR rs must be naturally aligned. If either of the two
least-significant bits are not-zero, then an Address Error exception occurs, not for the
jump instruction, but when the branch target is subsequently fetched as an instruction.

Operation:

I: temp « GPR]rs]s1.0
[+1: PC ~ temp

Exceptions:

None

Programming Notes:

None

A-55

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

LB Load Byte LB

31 26 25 21 20 16 15 0
LB
base rt
100000 offset
6 5 5 16
MIPS |

Format: LB rt, offset (base)

Purpose: To load a byte from memory as a signed value.

Description: rt —« memory [base + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are
fetched, sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the
contents of GPR base to form the effective address.

Restrictions:

None

Operation: (128-bit bus)
vAddr — sign_extend (offset) + GPR[base] s1..0
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrsize-1).4 || (pPAddrs.o xor BigEndian?)
memquad — LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddrs.o xor BigEndian*
GPRJrt]es.0 « sign_extend (memqguad (7+8«byte). 8<byte)

Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

A-56

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

LBU Load Byte Unsigned LBU

31 26 25 21 20 16 15 0
LBU
base rt
100100 offset
6 5 5 16
MIPS |
Format: LBU rt, offset (base)
Purpose: To load a byte from memory as an unsigned value.
Description: rt —« memory [base + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are
fetched, zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the
contents of GPR base to form the effective address.

Restrictions:

None

Operation: (128-bit bus)
vAddr — sign_extend (offset) + GPR[base] s1..0
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrsize-). 4 || (PAddrs.o xor BigEndian?)
memquad — LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddrs.o xor BigEndian*
GPRJrt]es.0 « zero_extend (memquadz+s«byte). 8<byte)

Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

A-57

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

LD Load Doubleword LD

31 26 25 21 20 16 15 0
LD
base rt
110111 offset
6 5 5 16
MIPS 1l
Format: LD rt, offset (base)
Purpose: To load a doubleword from memory.
Description: rt —« memory [base + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned
effective address are fetched and placed in GPR rt. The 16-bit signed offset is added to the
contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If any of the three least-significant bits of
the effective address are non-zero, an Address Error exception occurs.

Operation: (128-bit bus)
vAddr —sign_extend (offset) + GPR [base] s1..0
if (vVAddrz.0) # 0% then SignalException (AddressError) endif
(pAddr, uncached) — AddressTranslation (vVAddr, DATA, LOAD)
pAddr — pAddresize-y). 4 || (pAddrs.o xor (Bigendian || 03))
byte « vAddrz.o|| (BigEndian || 03)
memqguad — LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt]e3.0 « memaguades+s-byte)..8«byte
Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

A-58

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

LDL Load Doubleword Left LDL

31 26 25 21 20 16 15 0
LDL
base rt
011010 offset
6 5 5 16
MIPS 1l

Format: LDL rt, offset (base)
Purpose: To load the more-significant part of a doubleword from an unaligned memory address.
Description: rt « rt MERGE memory [base + offset]

Paired LDL and LDR instructions are used to load a register with a doubleword from
eight consecutive bytes in memory starting at an arbitrary byte address. LDL loads the
left (most-significant) bytes and LDR loads the right (least-significant) bytes.

The instruction adds the 16-bit signed offset to the contents of GPR base to form the
effective address. This is the address of the most-significant byte of a doubleword
composed of eight consecutive bytes in memory. LDL loads from one to eight bytes, the
most-significant bytes of the doubleword, into the corresponding bytes of GPR rt. It loads
the bytes that are in the target doubleword that are also in the aligned doubleword which
contains the byte specified by the effective address.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-
order (left-most) byte of the register; then it loads bytes from memory into the register
until it reaches the low-order byte of the doubleword in memory. The least-significant
(right-most) byte (s) of the register will not be changed.

memory

(little-endian) ,
register

address8 |[15(14(13|12|11({10| 9| 8
address 0 716|5|14|13|2|1]|0

before H{|G|F|E|D|C|B|A|%$24

LDL $24,11 ($0) register
after [11(10(9| 8| D|C|B|A| $24

memory

(big-endian) _
register

address8 [8|9 (10(11(12|13|14|15
addressO |0 |1|2|3|4|5|6]|7

before | A|B|C|D|E|F|[G|H]|%$24

LDL $24,3 ($0) register
after | 3[4 | 5|6 |7|F|G|H| $24

The contents of GPR rt are internally bypassed within the processor so that no NOP is
needed between an immediately preceding load instruction which specifies register rt and
a following LDL (or LDR) instruction which also specifies register rt.

A-59

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

No address exceptions due to alignment are possible.

Restrictions:

None

Operation: (128-bit bus)

vAddr — sign_extend (offset) + GPR[base] s1..0
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrsize-1).4 || (pPAddrs.o xor BigEndian?®)
if (BigEndian = 0) then
pAddr — pAddresize1).3 || 03
endif
byte — 0 || (vAddrz.o xor BigEndian?)
doubleword ~ vAddrs xor BigEndian
memquad — LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[I’t]Gs..O — memqUad(7+8*byte+64*doub|eword)..(64*doub|eword) || GPR[I’t] (55-8+byte)..0

Given a doubleword in a register and a doubleword in memory, the operation of LDL is as
follows:

A-60

TOSHIBA Appendix A CPU Instruction Set Details m%{étc&m
LDL
MSB 63 0 LSB
Register alb|lc|d|e]| f]g]|h
Little-endian 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
Memory | J K L M| N| O Pl Q| R S T VIW]|X
Little-endian byte ordering (BigEndianCPU = 0)
vAddrs o Destination register contents after instruction(shaded is unchanged) Type offset
(63 32 31 0) LEM BEM

0 X b © d ® f g h 0 0 15
1 w X c d e f g h 1 0 14
2 \% W X d @ f g h 2 0 13
3 U \% w X @ f g h 3 0 12
4 T U \ W X f g h 4 0 11
5 S T U \% W X g h 5 0 10
6 R S T U \% w X h 6 0 9
7 Q R S T U \ W X 7 0 8
8 P b © d ® f g h 0 8 7
9 (0] P © d ® f g h 1 8 6
10 N o} P d e g h 2 8 5
11 M N o} P e f g h 3 8 4
12 L M N o P f g h 4 8 3
13 K L M N (0] P g h 5 8 2
14 J K L M N (6] P h 6 8 1
15 | J K L M N (0] P 7 8 0

A-61

TOSHIBA Appendix A CPU Instruction Set Details m%{étc&m
LDL
MSB 63 0 LSB
Register alblc|d]|e f gl h
Big-endian o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Memory I JI| K| L[M[N]O[P|Q|IR|S|T|U|]V|IW]|]X
Little-endian 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Big-endian byte ordering (BigEndianCPU = 0)
VvAddrs o Destination register contents after instruction(shaded is unchanged) Type offset
(63 32 31 0) LEM BEM
0 | J K L M N o] P 7 0 0
1 J K L M N 0 P h 6 0 1
2 K L M N o] P g h 5 0 2
3 L M N o] P f g h 4 0 3
4 M N o) P e f g h 3 0 4
5 N O P d ® f g h 2 0 5
6 O P © d ® f g h 1 0 6
7 P b © d ® f g h 0 0 7
8 Q R S T U \Y w X 7 8 8
9 R S T U v w X h 6 8 9
10 S T u % w X g h 5 8 10
11 T u % w X f g h 4 8 11
12 U \Y w X ® f g h 3 8 12
13 \Y w X d ® f g h 2 8 13
14 w X © d ® f g h 1 8 14
15 X b © d ® f g h 0 8 15
LEM Little-endian memory (BigEndian = 0)
BEM BigEndian =1
Type AccessLength sent to memory
Offset pAddrs.o sent to memory
Exceptions:
TLB Refill
TLB Invalid

Address Error

Programming Notes:

None

A-62

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

LDR Load Doubleword Right LDR

31 26 25 21 20 16 15 0
LDR
base rt
011011 offset
6 5 5 16
MIPS 1l

Format: LDR rt, offset (base)
Purpose: To load the less-significant part of a doubleword from an unaligned memory address.
Description: rt « rt MERGE memory [base + offset]

Paired LDL and LDR instructions are used to load a register with a doubleword from
eight consecutive bytes in memory starting at an arbitrary byte address. LDL loads the
left (most-significant) bytes and LDR loads the right (least-significant) bytes.

The instruction adds the 16-bit signed offset to the contents of GPR base to form the
effective address. This is the address of the least-significant bytes of a doubleword
composed of eight consecutive bytes in memory. LDR loads from one to eight bytes, the
least-significant bytes of the doubleword, into the corresponding bytes of GPR rt. It loads
the bytes that are in the target doubleword that are also in the aligned doubleword which
contains the byte specified by the effective address.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-
order (right-most) byte of the register; then it loads bytes from memory into the register
until it reaches the high-order byte of the doubleword in memory. The most significant
(left-most) byte (s) of the register will not be changed.

memory

(little-endian) ,
register

address8 |[15(14(13|12|11({10| 9| 8
address 0 716|5|14|13|2|1]|0

before H{|G|F|E|D|C|B|A|%$24

LDR $24,4 ($0) register
after |H|G|F|E|7|6|5|4]| %$24

memory

(big-endian) _
register

address8 [8|9 (10(11(12|13|14|15
addressO |0 |1|2|3|4|5|6]|7

before | A|B|C|D|E|F|[G|H]|%$24

LDR $24,4 (30) register
after |A|B|[C|0|1]|2]|3|4]|%$24

The contents of GPR rt are internally bypassed within the processor so that no NOP is
needed between an immediately preceding load instruction which specifies register rt and
a following LDR (or LDL) instruction which also specifies register rt.

A-63

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

No address exceptions due to alignment are possible.

Restrictions:

None

Operation: (128-bit bus)

vAddr — sign_extend(offset) + GPR[base] 31.0
(pAddr, uncached) — AddressTranslation (vVAddr, DATA, LOAD)
pAddr — pAddresize-1.o || (PAddrs.o xor BigEndian?®)
if (BigEndian = 1) then
pAddr — pAddrpesize1).3 || 03
endif
byte — 0 || (vAddrz.oxor BigEndian?)
doubleword — vAddrsxor BigEndian
memquad — LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[rt]e3.0 « GPR]rt] 63.(64-8+byte) || Memquad s3+64«doubleword).. (64+doubleword+8<byte)

Given a doubleword in a register and a doubleword in memory, the operation of LDR is as
follows:

A-64

TOSHIBA Appendix A CPU Instruction Set Details m%{étc&m
LDR
MSB 63 0 LSB
Register alblc|d]|e f gl h
Little-endian 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
Memory I J K| L M| N|] O[P|Q|R]| S| T vV [W
Little-endian byte ordering (BigEndianCPU = 0)
VvAddrs o Destination register contents after instruction(shaded is unchanged) Type offset
(63 32 31 0) LEM BEM

0 Q R S T U \Y W X 7 0 0
1 a Q R S T U \% W 6 1 0
2 a b Q R S T U v 5 2 0
3 a b © Q R S T U 4 3 0
4 a b © d Q R S T 3 4 0
5 a b © d ® Q R S 2 5 0
6 a b © d ® f Q R 1 6 0
7 a b © d e f g Q 0 7 0
8 | J K L M N (6] P 7 8 0
9 a | J K L M N (0] 6 9 0
10 a b | J K L M N 5 10 0
11 a b © | J K L M 4 11 0
12 a b © d | J K L 3 12 0
13 a b c d e | J K 2 13 0
14 a b c d e f | J 1 14 0
15 a b © d ® f g | 0 15 0

A-65

TOSHIBA Appendix A CPU Instruction Set Details m%{étc&m
LDR
MSB 63 0 LSB
Register a|bfc|d]|]e] f|[g]h
Big-endian 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Memory I J K| L M| N]J]O[P|Q|R|] S| TJU|V]|W]X
Little-endian 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Big-endian byte ordering (BigEndianCPU = 1)
VvAddrs o Destination register contents after instruction(shaded is unchanged) Type offset
(63 32 31 0) LEM BEM

0 b c d e f g [0 15 0
1 b c d e f | J 1 14 0
2 b c d e | J K 2 13 0
3 b c d | J K L 3 12 0
4 b c | J K L M 4 11 0
5 b | J K L M N 5 10 0
6 | J K L M N O 6 9 0
7 J K L M N O P 7 8 0
8 b c d e f g Q 0 7 0
9 b [d e f Q R 1 6 0
10 b c d e Q R S 2 5 0
11 b c d Q R S T 3 4 0
12 b [Q R S T U 4 3 0
13 b Q R S T u \% 5 2 0
14 Q R S T U \Y \W 6 1 0
15 R S T u \ \W X 7 0 0

LEM Little-endian memory (BigEndianMem = 0)

BEM BigEndianMem =1

Type AccessLength sent to memory

Offset pAddrz.o sent to memory

Exceptions:
TLB Refill
TLB Invalid

Address Error

Programming Notes:

None

A-66

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

LH Load Halfword LH

31 26 25 21 20 16 15 0
LH
base rt
100001 offset
6 5 5 16
MIPS |

Format: LH rt, offset (base)
Purpose: To load a halfword from memory as a signed value.
Description: rt —« memory [base + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned
effective address are fetched, sign-extended, and placed in GPR rt. The 16-bit signed offset
is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If the least-significant bit of the address
is non-zero, an Address Error exception occurs.

Operation: (128-bit bus)
vAddr — sign_extend (offset) + GPR[base] s1..0
if (vAddro) # 0 then SignalException (AddressError) endif
(pAddr, uncached) — AddressTranslation (vVAddr, DATA, LOAD)
pAddr — pAddresize-1).4 || (pPAddrs.o xor (Bigendian? || 0))
memqguad ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte « vAddrz.o xor (Bigendian3||0)
GPR[rt]es.0 — sign_extend (memguadis+s«byte). 8-byte)
Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

A-67

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

LHU Load Halfword Unsigned LHU

31 26 25 21 20 16 15 0
LHU
base rt
100101 offset
6 5 5 16
MIPS |
Format: LHU rt, offset (base)
Purpose: To load a halfword from memory as an unsigned value.
Description: rt —« memory [base + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned
effective address are fetched, zero-extended, and placed in GPR rt. The 16-bit signed offset
is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If the least-significant bit of the address
is non-zero, an Address Error exception occurs.

Operation: (128-bit bus)
vAddr — sign_extend (offset) + GPR [base] s1..0
if (vAddro) # 0 then SignalException (AddressError) endif
(pAddr, uncached) — AddressTranslation (vVAddr, DATA, LOAD)
pAddr — pAddresize-1).4 || (pPAddrs.o xor (Bigendian? || 0))
memqguad ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte « vAddrz.o xor (Bigendian3||0)
GPR [rt]es.0 « zero_extend (memquad(is+g-byte). 8«byte)
Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

A-68

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

LUI Load Upper Immediate LUI

31 26 25 21 20 16 15 0
LUl 0 rt immediate
001111 00000
6 5 5 16
MIPS |

Format: LUI rt, immediate
Purpose: To load a constant into the upper half of a word.
Description: rt — immediate ||016

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order
zeros. The 32-bit result is sign-extended and placed into GPR rt.

Restrictions:

None

Operation:
GPR [rt]s3.0 « sign_extend (immediate || 016)
Exceptions:

None

Programming Notes:

None

A-69

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

LW Load Word LW

31 26 25 21 20 16 15 0
LW
base rt
100011 offset
6 5 5 16
MIPS |
Format: LW rt, offset (base)
Purpose: To load a word from memory as a signed value.
Description: rt —« memory [base + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective
address are fetched, sign-extended to the GPR register length if necessary, and placed in
GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective
address.

Restrictions:

The effective address must be naturally aligned. If either of the two least-significant bits
of the address are non-zero, an Address Error exception occurs.

Operation: (128-bit bus)
vAddr — sign_extend (offset) + GPR [base] s1..0
if (vVAddr1.0) # 02 then SignalException (AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddresize-1).4|| (pAddrs.o xor (BigEndian? || 0%))
memquad — LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddrs.oxor (Bigendian?||0?)
GPR [rt] 63.0 « sign_extend (memquadzi+s«byte)..8+byte)
Exceptions:

TLB Refill
TLB Invalid
Address Error

Programming Notes:

None

A-70

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

LWL Load Word Left LWL

31 26 25 21 20 16 15 0
LWL
base rt
100010 offset
6 5 5 16
MIPS |

Format: LWL rt, offset (base)

Purpose: To load the more-significant part of a word from an unaligned memory address as a

signed value.
Description: rt —« rt MERGE memory [base + offset]

Paired LWL and LWR instructions are used to load a register with a word from four
consecutive bytes in memory starting at an arbitrary byte address. LWL loads the left
(most-significant) bytes and LWR loads the right (least-significant) bytes.

The instruction adds the 16-bit signed offset to the contents of GPR base to form the effective
address. This is the address of the most-significant byte of a word composed of four consecutive
bytes in memory. LWL loads from one to four bytes, the most-significant bytes of the word,
into the corresponding bytes of GPR rt. It loads the bytes that are in the target word that are
also in the aligned word which contains the byte specified by the effective address.

Bit 31 of the register is loaded so the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-
order (left-most) byte of the register; then it loads bytes from memory into the register
until it reaches the low-order byte of the word in memory. The least-significant (right-
most) byte(s) of the register will not be changed.

memory
(little-endian)

register

address 4 7 6
address 0 3 2 1 0

LWL $24,4 ($0) register
after 4 [C | B[A $24

memory
(big-endian)

before | D C B A $24

register
address 4 4 5 6 7

address 0 0 1 2 3

LWL $24,1 ($0) register
after 1 2 3| d $24

before | a b c d $24

A-71

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

The contents of GPR rt are internally bypassed within the processor so that no NOP is
needed between an immediately preceding load instruction which specifies register rt and
a following LWL (or LWR) instruction which also specifies register rt.

No address exceptions due to alignment are possible.

Restrictions:

None

Operation: (128-bit bus)

vAddr — sign_extend (offset) + GPR [base] s1..0
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrsize-1).4 || (pPAddrs.o xor BigEndian?)
if (BigEndian = 0) then
pAddresize-1).3 || 03
endif
byte — 02 || (vAddri.oxor BigEndian?)
word — vAddrs.2 xor BigEndian?
memqguad — LoadMemory (uncached, byte, pAddr, vAddr, DATA)
temp — memquad 2 word+8«byte+7)..32+word || GPR [rt] (23-8+byte)..0
GPR [rt]63.0 « (tempa1)3? || temp

Given a doubleword in a register and a doubleword in memory, the operation of LWL is as
follows:

A-72

TOSHIBA Appendix A CPU Instruction Set Details m%{étc&m
LWL
MSB 63 0 LSB
Register a|lbl|lc|[d|[fe] f]g]lh
Little-endian 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
Memory | J KIL]IM] N[O|P|Q|R| S| T VW] X
Little-endian byte ordering (BigEndianCPU = 0)
VvAddrs o Destination register contents after instruction(shaded is unchanged) Type offset
(63 32 31 0) LEM BEM

0 Sign bit(31) extended X f g h 0 0 15
1 Sign bit(31) extended W X g h 1 0 14
2 Sign bit(31) extended \% W X h 2 0 13
3 Sign bit(31) extended U \ W X 3 0 12
4 Sign bit(31) extended T f g h 0 4 11
5 Sign bit(31) extended S T g h 1 4 10
6 Sign bit(31) extended R S T h 2 4 9
7 Sign bit(31) extended Q R S T 3 4 8
8 Sign bit(31) extended P f g h 0 8 7
9 Sign bit(31) extended (0] P g h 1 8 6
10 Sign bit(31) extended N O P h 2 8 5
11 Sign bit(31) extended M N (0] P 3 8 4
12 Sign bit(31) extended L f g h 0 12 3
13 Sign bit(31) extended K L g h 1 12 2
14 Sign bit(31) extended J K L h 2 12 1
15 Sign bit(31) extended | J K L 3 12 0

A-73

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

LWL
MSB 63 0 LSB
Register a|bfc|d]e] f|[g]h
Big-endian 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Memory I J K LIM| NIO|P|Q|R|S|TJ]U|V]|W|X
Little-endian 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Big-endian byte ordering (BigEndianCPU = 1)
VvAddrs o Destination register contents after instruction(shaded is unchanged) Type offset
(63 32 31 0) LEM BEM
0 Sign bit(31) extended I J K L 3 12 0
1 Sign bit(31) extended J K L h 2 12 1
2 Sign bit(31) extended K L g h 1 12 2
3 Sign bit(31) extended L f g h 0 12 3
4 Sign bit(31) extended M N (0] P 3 8 4
5 Sign bit(31) extended N (@) P h 2 8 5
6 Sign bit(31) extended (0] P g h 1 8 6
7 Sign bit(31) extended P f g h 0 8 7
8 Sign bit(31) extended Q R S T 3 4 8
9 Sign bit(31) extended R S T h 2 4 9
10 Sign bit(31) extended S T g h 1 4 10
11 Sign bit(31) extended T f g h 0 4 11
12 Sign bit(31) extended U \ W X 3 0 12
13 Sign bit(31) extended \% W X h 2 0 13
14 Sign bit(31) extended W X g h 1 0 14
15 Sign bit(31) extended X f g h 0 0 15
LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem =1
Type AccessLength sent to memory
Offset pAddrz.o sent to memory
Exceptions:
TLB Refill
TLB Invalid

Address Error

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned
values, i.e. zeroing bits 63..32 of the destination register when bit 31 is loaded. See SLL or
SLLYV for a single-instruction method of propagating the word sign bit in a register into
the upper half of a 64-bit register.

A-74

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

LWR Load Word Right LWR

31 26 25 21 20 16 15 0
LWR
100110 base rt offset
6 5 5 16

MIPS |

Format: LWR rt, offset (base)

Purpose: To load the less-significant part of a word from an unaligned memory address as a signed

value.
Description: rt « rt MERGE memory [base + offset]

Paired LWL and LWR instructions are used to load a register with a word from four
consecutive bytes in memory starting at an arbitrary byte address. LWL loads the left
(most-significant) bytes and LWR loads the right (least-significant) bytes.

The instruction adds the 16-bit signed offset to the contents of GPR base to form the effective
address. This is the address of the least-significant byte of a word composed of four consecutive
bytes in memory. LWR loads from one to four bytes, the least-significant bytes of the word,
into the corresponding bytes of GPR rt. It loads the bytes that are in the target word that are
also in the aligned word which contains the byte specified by the effective address.

If the word sign bit (bit 31) is loaded from memory into the register by the instruction,
then the loaded word is sign-extended. If the sign bit is not loaded from memory by the
LWR, then bits 63..32 of the destination are unchanged.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-
order (right-most) byte of the register; then it loads bytes from memory into the register
until it reaches the high-order byte of the word in memory. The most significant (left-
most) byte(s) of the register will not be changed.

memory
(little-endian)

register
address 4 7 6 5 4

address 0 3 2 1

before | D C B A $24

LWR $24,1 ($0) register
after | D | 3| 2| 1 $24

A-75

X
TOSHIBA Appendix A CPU Instruction Set Details mﬁﬁtcem

memory
(big-endian)

register
address 4 4 5 6 7

address 0 0 1 2 3

LWR $24,4 ($0) register
after | A| B| C| 4 $24

The contents of GPR rt are internally bypassed within the processor so that no NOP is
needed between an immediately preceding load instruction which specifies register rt and
a following LWR (or LWL) instruction which also specifies register rt.

before | A B C D $24

No address exceptions due to alignment are possible.

Restrictions:

None

Operation: (128-bit bus)

vAddr — sign_extend (offset) + GPR [base]s1..0
(pAddr, uncached) — AddressTranslation (vVAddr, DATA, LOAD)
pAddr — pAddrsize-). 4 || (PAddrs.o xor BigEndian?®)
if (BigEndian = 1) then
pAddresize-31).3 || 03
endif
byte — 0 ||(vAddri.oxor BigEndian?)
word — vAddrs.2 xor BigEndian?
memquad — LoadMemory (uncached, byte, pAddr, vAddr, DATA)
temp « GPR [rt]s1. 32-8:byte) || Mmemaguadzi+32+word).. (32+word+8+byte)
if (byte = 4) then
utemp — (temp31)32 /+ loaded bit 31, must sign extend */
else
one of the following two behaviors:
utemp ~ GPR [I’t]63..32 I+ leave what was there alone */
utemp ~ (GPR [rt]31)32 I+ sign-extend bit 31 */
endif
GPR [rt] 63.0 —« utemp ||temp

Given a word in a register and a word in memory, the operation of LWR is as follows:

A-76

TOSHIBA Appendix A CPU Instruction Set Details m%{étc&m
LWR
MSB 63 0 LSB
Register a|bl|lc|[d|e]f
Little-endian 15 14 13 12 11 10 9 8 5 4 2 1 0
Memory | J Kl L]M|] N[O T VW] X
Little-endian byte ordering (BigEndianCPU = 0)
VvAddrs o Destination register contents after instruction(shaded is unchanged) Type offset
(63 32 31 0) LEM BEM

0 Sign bit (31) extended e f g | 0 15 0
1 Sign bit (31) extended or unchanged e f | J 1 14 0
2 Sign bit (31) extended or unchanged e | J K 2 13 0
3 Sign bit (31) extended or unchanged I J K L 3 12 0
4 Sign bit (31) extended e f g M 0 11 4
5 Sign bit (31) extended or unchanged e f M N 1 10 4
6 Sign bit (31) extended or unchanged e M N (0] 2 9 4
7 Sign bit (31) extended or unchanged M N (0] P 3 8 4
8 Sign bit (31) extended e f g Q 0 7 8
9 Sign bit (31) extended or unchanged e f Q R 1 6 8
10 Sign bit (31) extended or unchanged e Q R S 2 5 8
11 Sign bit (31) extended or unchanged Q R S T 3 4 8
12 Sign bit (31) extended e f g U 0 3 12
13 Sign bit (31) extended or unchanged e f U \% 1 2 12
14 Sign bit (31) extended or unchanged e \% W 2 1 12
15 Sig