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Highly Parallel Fast KD-tree Construction for Interactive
Ray Tracing of Dynamic Scenes
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Figure 1: Dynamic scenes ray traced using parallel fast construction of kd-tree. The scenes were rendered with shadows, 1
reflection (except HAND) and textures at 512x512 resolution on a 2-way Intel ®C0reTM 2 Duo machine.

a) HAND - a static model of a man with a dynamic hand; 47K static and 8K dynamic triangles; 2 lights; 46.5 FPS.

b) GOBLIN - a static model of a hall with a dynamic model of a goblin; 297K static and 153K dynamic triangles; 2 lights;
9.2 FPS.

¢) BAR - a static model of bar Carta Blanca with a dynamic model of a man; 239K static and 53K dynamic triangles; 2 lights;
12.6 FPS.

d) OPERA TEAM - a static model of an opera house with a dynamic model of 21 men without instancing; 78K static and 1105K
dynamic triangles; 4 lights; 2.0 FPS.

Abstract

We present a highly parallel, linearly scalable technique of kd-tree construction for ray tracing of dynamic ge-
ometry. We use conventional kd-tree compatible with the high performing algorithms such as MLRTA or frustum
tracing. Proposed technique offers exceptional construction speed maintaining reasonable kd-tree quality for ren-
dering stage. The algorithm builds a kd-tree from scratch each frame, thus prior knowledge of motion/deformation
or motion constraints are not required. We achieve nearly real-time performance of 7-12 FPS for models with
200K of dynamic triangles at 1024x1024 resolution with shadows and textures.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism: Ray tracing; Color; Shading; Shadowing and texture 1.3.1 [Hardware Architecture]: Paral-
lel processing

1. Introduction

Ray tracing is the core method of photo realistic rendering
T {maxim.y.shevtsov,alexey.soupikov,alexander.kapustin} @intel.com  using global illumination simulation. Excellent ray tracing
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reference is [Gla89]. Since ray tracing requires global ac-
cess to the entire scene it heavily relies on good acceleration
structures to make ray-shooting queries efficient [Hav01].

Kd-tree is the acceleration structure of choice for the ma-
jority of current interactive ray tracing algorithms [HavO1,
Wal04]. A kd-tree is an axis-aligned BSP tree that splits the
scene space using a cost function for the split position. Due
to using kd-tree ray tracing algorithm has logarithmic com-
plexity of number of primitives. The cost model for kd-tree
construction [MB90] estimates the average cost of travers-
ing an arbitrary ray through the kd-tree, combining a cost of
traversal step and a cost of ray-primitive intersection test. A
kd-tree construction proceeds in top-down fashion using the
estimated cost to determine split plane position in a current
node until some termination criteria is reached and the node
becomes a leaf.

Although ray tracing of complex static scenes with mil-
lions of triangles has become interactive recently [RSHOS5]
fully exploiting parallelism of the rendering stage, dealing
with dynamic scenes is an open problem.

Construction of high quality kd-tree is a computation-
ally complex problem difficult to parallelize. Although fast
build methods were published [WH06, PGSS06, HSMO06,
WKO6], their performance allows interactive ray-tracing for
scenes with a relatively fraction of dynamic triangles (about
100,000). We raise that barrier without implying any restric-
tions on the dynamic behavior of the scene. The presented
method rebuilds kd-tree for the entire scene each frame and
does not require any prior information about vertices motion.
Its performance also scales linearly with number of threads.

We propose parallel initial spatial partitioning that allows
identification and construction of kd-tree branches (sub-
trees) by threads independently. This approach takes advan-
tage of the parallelism present to the largest possible degree.
Building a sub-tree does not require any synchronization in
the inner loop and the sub-tree data can fit in caches of the
processor constructing that sub-tree.

2. Previous Work

There is a wide range of hardware architectures suggested to
run ray-tracing. Research was done recently for ray-tracing
and kd-trees mapped to GPU [Pur04,FS05], and to Cell pro-
cessor [BWSF06]. Dedicated ray tracing hardware is pro-
posed by [WSS05, WMSO06]. We target a shared memory
architecture with many CPU-like cores, including recent
multi-core CPUs.

A choice of acceleration structure is a critical issue for
ray-tracing. The simplicity of using axis-aligned bounding
box (AABB) as a proxy for geometry is very attractive for
accelerating ray tracing. Nearly real-time performance of
acceleration structures directly based on AABBs hierarchy,
like BVH [RW80], is obtained for scenes with either a-priori

known motion [WBS07] or with quite small number of mov-
ing triangles [LYMTO06]. A memory efficient variant was
proposed in [WKO6]. Benthin in [Ben06] uses AABB for
each NURB during construction of the kd-tree to avoid ex-
pensive computations. We use triangle AABB as a proxy
during kd-tree construction as it has additional advantage for
fast SAH estimation since the number of potential split can-
didates for a given AABB is limited.

Using a uniform grid for dynamic scenes and frustums
traversal is presented in [WIK*06]. Even with such exten-
sions a uniform grid has rather poor performance at render-
ing stage as it lacks an adaptivity to spatial distribution of
geometry. Nested grids can better adapt to the scene geom-
etry. Ray traversal algorithm for such structures is not that
efficient though, since 3D-DDA algorithm cannot be used.
In addition, even with improvements like special coding of
empty space grid-based techniques suffer from large storage
requirements [HavO1].

Construction of high quality KD-tree is bandwidth hun-
gry and computationally expensive task. Attempts to re-
duce time spent on kd-tree construction were performed us-
ing hybrid data structure combining kd-tree with bounding
volumes [HHSO06]. Similar combining of BVH and spatial
partitioning for increasing overall performance was made
in [WKO6]. However these approaches still lack parallel im-
plementation and optimized traversal like MLRT [RSHOS5]
and thus demonstrate modest overall performance. Several
researchers [WHO6] use variations of sweep-and-prune al-
gorithm for kd-tree construction. The sweep requires split
candidates at each dimension to be sorted only once at the
beginning of the construction. The details of implementation
are described in [WHO6]. We advocate the approach when
no sweep-and-prune algorithm is used to avoid any sorting
since its parallel implementation can easily become band-
width limited for large input models.

The acceleration of kd-tree construction restricting a set
of possible splits by space discretization was first introduced
in [HKRS02]. Conceptually the same idea was described
in [PGSS06]. [WHO6] use triangle centroids instead of tri-
angle bounds. Using that approach for a SAH approxima-
tion is limited to the case when triangles do not vary much
in size. In contrast, we have no restrictions on the prim-
itive size or geometry distribution. We use binning pretty
similar to [HKRSO02] and [PGSS06]. Several researches
[HSMO06, PGSS06] increase kd-tree construction speed ap-
proximating SAH by a piecewise linear function. However,
their implementations do not exploit the full potential of ag-
gressive SAH approximation. The precise SAH evaluation
takes about 90% of the construction time in [PGSS06] jeop-
ardizing the benefits of using SAH approximation. We per-
form the re-binning after selecting a single split rather than
trying to look for all splits at the current tree depth. Our ap-
proach simplifies memory management and perfectly saves
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memory bandwidth since our SAH evaluation algorithm ac-
cesses memory in a sequential read-only pattern.

To overcome the algorithmic complexity [PGSS06] intro-
duce a technique of the cost function evaluation at every k-th
candidate position but they are still processed at the sorting
stage. We propose the technique of skipping all computa-
tions for skipped candidates.

One of the bottlenecks of kd-tree construction is memory
allocation. The total size of data is growing during construc-
tion process. Calling memory allocation functions (malloc,
calloc, etc.) is expensive. In a case of parallel implemen-
tation the allocation calls add high synchronization over-
head. [Ben06] uses a thread-local pre-allocated pool. Its ob-
vious disadvantage is impossibility to estimate the size of
the pool in advance. We propose a thread-safe memory pool
implementation allocating additional memory so rarely that
it doesn’t affect performance.

Although some researchers [Ben06, PGSS06] are explor-
ing a possibility of parallel kd-tree construction their re-
sults are still far from perfect scalability especially on many
threads or cores. Thus [Ben06] present using 2 threads run-
ning creation and initial sorting of candidate lists only. Par-
allel implementation by [PGSS06] has a considerable se-
quential portion. [[WP07] presents alternative way of han-
dling dynamic scenes. The system performs rendering and
re-fitting of current BVH version in multiple threads con-
structing a new BVH version asynchronously in a single
dedicated thread. The system demonstrated impressive per-
formance since in many dynamic cases the quality of re-
fitted BVH degrades slowly over multiple frames providing
enough time for sequential construction of the new BVH.
Handling scenes with fast motion or quickly changing topol-
ogy is still problematic since in such cases the BVH re-fitting
is not usable and full construction is required.

We present a kd-tree construction with all stages running
in parallel with minimal synchronization overhead allowing
to exploit as many threads as available to achieve fast kd-tree
re-build from scratch every frame.

3. Fast construction of kd-trees

Using high-quality kd-tree is essential for achieving interac-
tive ray tracing performance. Therefore, the goal is building
a kd-tree as fast as possible minimizing its quality degrada-
tion. A typical kd-tree construction proceeds in a top-down
fashion by recursively splitting a current node into two sub-
nodes using the following sequence of tasks.

e Generate split plane candidates at some locations;

e Evaluate cost function using SAH at each location;

e Pick the optimal candidate (with lowest cost) and perform
split into two child nodes;

e Pass over geometry to distribute it among children;

e Repeat recursively;
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We follow the similar approach. In this section we focus
on the first three stages. We use triangle AABB as a proxy
for triangle during fast estimation of SAH. The cost func-
tion is piecewise linear thus it needs to be evaluated only
at the boundaries of the AABBs that lie inside current node
[Ben06]. These locations are also called split candidates.

3.1. SAH-approximation

As shown in [WHO6] for a large number of geometric prim-
itives the cost function can be computed in a discretized set-
ting because of its integral form. To overcome an algorithmic
complexity we use conceptually similar technique, although
our approach works with both large and small objects. In-
stead of storing object references at each bin we replace a
variable size list (or array) with just an object counter. Con-
structing such a structure requires a single and inexpensive
pass over geometry rather than sorting.

3.2. Conventional binning algorithm

Originally binning algorithm (pigeonhole sorting, bucket
sorting) algorithm was proposed for points. The idea is to
split a 1-D interval into a given number of equally sized bins
forming a regular grid. The bin index an object belongs to
can be calculated directly from it’s position. Using a sin-
gle linear pass over geometry one computes a number of
triangles in the bin and updates bin’s candidate split value
(closest to the bin boundary), see Figure 2. When a triangle
represented as a single point a bin where point is located is
updated or each bin overlapped by the triangle is updated if
the algorithm works with full triangle extent. This data later
is used for fast SAH approximation which is very imprecise.
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Figure 2: a) Conventional binning algorithms and b) evalu-
ation of SAH using this algorithm

3.3. Min-max binning algorithm

The idea of min-max binning algorithm inspired by
[HKRS02] is to keep track of where each triangle AABB
begins and ends in two separate sets of bins, see Figure 3.
Almost the same technique was described in [PGSS06].

Each bin is just a counter. For each primitive’s AABB we
update exactly one bin in the first set (where AABB begins)
and one bin in the second set (where AABB ends). Thus
we completely remove a dependency on the total number of
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Figure 3: a) min-max binning algorithm and b) evaluation
of SAH using this algorithm

bins. This property of the algorithm is essential for initial
clustering task (section 4.1).

We build min-max bins using separate 1D grid in each
dimension. Nevertheless our algorithm is well suited for 2-
D and even 3-D binning. The described min-max binning is
also well suited for algorithms storing primitive references in
bins since it eliminates the need to keep track of references
to be unique at leaves. However, we observed that storing in-
dividual primitive lists in bins is not necessary since storing
counters performs better.

We perform adaptive skipping of the primitives at the
higher kd-tree levels. Processing each /-th primitive at the
binning step, where /= log;;(N) and N is number of prim-
itives in the current node, allows 3-4x speedup for heavily
tessellated objects as N and log(N) change at each node pro-
viding somewhat equal weighting of features. However, even
better would be using a low-detailed version of the given
scene for the same purpose.

3.4. SAH estimation using min-max bins

SAH approximation algorithm consists of two steps. The
first step is a pass over the primitives performing the min-
max binning. The second step is a pass over bins estimating
SAH values.

Bin boundaries are used as splitting plain candidates. A
number of primitives on the left of the split candidate is
computed using min-bins set and number of primitives on
the right is computed using max-bins set. Min-max binning
allows computing exact primitive counters to the left and to
the right of a bin boundary disregarding of primitive sizes.

The position minimizing SAH value is selected as a split.
An additional pass over the primitives creates arrays of prim-
itive references for the left and the right sub-nodes. We will
refer to this pass as a geometry splitting pass. During this
pass we also determine the tight boundaries of geometry in
the children and adjust the final split plane position to the
one of those boundaries if there is an empty space between
children.

As other researchers [PGSS06, HSMO06] we also switch to
exact SAH-evaluation at some tree depth. The important dif-
ference we found is that we can use our SAH approximation
at much deeper tree levels. Experiments demonstrated that it
is beneficial to switch to exact SAH computation when the
number of primitives in the current node is less or equal to
the number of bins. Experiments show that using the same
fixed number of 32 bins at any level is sufficient. Initial clus-
tering phase in the parallel algorithm (section 4) requires
more though.

3.5. Memory allocation

We implement possibly the fastest way of keeping track of
the memory allocation for kd-tree construction. We keep
tracking of memory by chunks linked into lists. For each
chunk we store a start pointer, a chunk size and an end
pointer. The space between begin pointer and end pointer
comprises committed memory. Every memory request just
shifts the end-pointer by the certain amount of bytes. If the
there is no memory left in the current chunk to complete
request memory manager allocates a new chunk (usually it
happens no more than 2-4 times per the whole construction).
The manager links chunks in a list such that the last chunk
in the list is the last used chunk.

When memory is returned the manager easily finds the
corresponding chunk because its boundaries are known
(from "begin" to "begin + size of chunk") and shifts the end
pointer by the amount of the returned memory. Such mem-
ory management requires that the memory for a particular
task is returned in the same order as it was committed. Con-
struction of kd-tree in top-down and left-first fashion per-
fectly fits into such memory management model.

Kd-tree construction uses two types of memory pools.
First type is a pool for nodes and leaves of kd-tree that
only grows during construction, so it transparently maps to
a linked list of chunks. Second type stores primitive indices
for the left and right sub-node at each recursive step thus it
is a subject to frequent allocation/deallocation. Typically, the
kd-tree is built in left-first order which starts with the whole
scene and always continuing to construct the left sub-tree,
and then right sub-tree, until returning to the root. To handle
this we use one pool for left sub-nodes and another pool for
right sub-nodes. In this case memory re-allocations always
happen at the tail of each pool.

4. Parallel construction of kd-trees

Presented approach is easily extended to the parallel con-
struction of kd-trees in multiple threads. Running task in
parallel requires partitioning of the whole task into smaller
portions (jobs) assigned to threads.

A straightforward way is exploiting data parallelism at
each step of algorithm outlined in section 3. In fact, binning
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and geometry splitting passes perfectly run in parallel when
each thread is given an equal number of primitives. Memory
management is also easy: each thread has its own set of the
pools described above. Such approach works well for a large
number of primitives. The alternate way is when each thread
builds a sub-tree. This requires some sort of initial decom-
position of geometry. However, initial decomposition so far
was performed sequentially [PGSS06]. We present a parallel
solution to this phase too.

The simplest decomposition is even distribution of the
primitives among available threads. E.g. each of the 4
threads processes 250K triangles from 1M triangles in scene.
Despite of good memory locality, such geometry decompo-
sition has an obvious disadvantage. Kd-trees built by the dif-
ferent threads will overlap in space. There is no known way
to merge overlapping kd-trees, while traversing several trees
with a ray results in rendering slowdown.

Partitioning of space instead of geometry results in non-
overlapping kd-trees easily mergeable into a single tree. A
regular space partitioning leads to poor load balancing. Thus
processing space regions in parallel requires using geometry
distribution information for regions selection.

4.1. Initial clustering algorithm for fast partitioning of
the domain

Initial clustering partitions space into regions that are further
distributed among threads as jobs. This section describes an
efficient clustering that itself runs in parallel.

Initial clustering splits the whole scene AABB into dis-
joint regions that have roughly the same number of primi-
tives. Clustering is done in the data parallel fashion and then
resulting regions are given to each individual thread to build
local kd-trees (see Figure 4). Initial clustering starts with par-
allel binning ("binning” stage at Figure 4). Each thread runs
min-max binning algorithm processing its own set of prim-
itives. Multiple pairs of thread-local bins are merged into a
global bins pair via counters summing.

Using the global binning data we quickly estimate an ap-
proximate object median position. The whole spatial domain
is split into two sub-domains by the boundary of a bin cor-
responding to the median value. We repeat median split step
using the same binning data in each sub-domain until the
number of sub-domains is equal to the number of threads (or
a multiple of the number of threads for a finer granularity).
The second pass over primitives creating arrays of primitives
for each sub-domain is also parallel ("assignment” stage at
Figure 4). It requires only O(log, (7)) decomposition tree
levels, where T is the number of threads, see Figure 5. The
sub-domains are disjoint and contain approximately equal
number of the primitives. For scenes with roughly uniform
triangle densities (like the majority of heavily tessellated or
scanned models) building sub-trees in individual threads is
naturally load-balanced.

(© The Eurographics Association and Blackwell Publishing 2007.
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Figure 5: Balanced decomposition by initial clustering

In general case though resulting sub-domains might re-
quire building trees of different complexity (i.e. depth) lead-
ing to different per thread construction time. To balance the
load we break the construction of a sub-tree into smaller
tasks inserted and fetched by the threads into/from a shared
task pool dynamically. Currently we use the simple and
straightforward method of tasks creation. When construct-
ing both children a thread inserts the right child into the pool
and proceeds with construction of the left child. The tasks
are generated at the upper levels of the thread-local subtree
to keep the number of tasks reasonable and avoid a synchro-
nization overhead by limiting the task pool size. We exper-
imented with different sizes of the task pool (up to 200K
tasks) and found that for 4 threads 256 task entries would be
optimal.
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5. Implementation

Bulk of the construction stages use primitive AABBs instead
of the actual primitives. AABBs are stored in large arrays.
Since construction processes each axis separately we store
AABBs as structure of arrays of bounds (SOA) rather than
array of structures (AOS).

Number of bins is the most important parameter of SAH
approximation based construction since kd-tree quality de-
pends on it. As in [PGSS06] we perform re-binning at each
level of recursion which leads to a very good adaptive refine-
ment of bins resolution. Re-binning with a small constant
number of bins results in exponential growth of binning res-
olution with tree depth, so it always outperforms re-using a
single set of high resolution bins constructing a large num-
ber of tree levels. E.g. re-binning with 32 bins at depth level
3 is approximately equivalent to 256 (32%2°) at the top level.

Number of bins for initial clustering stage should be high
since we build clusters from a single set of bins without re-
binning. In our experiments, we observed that 512*T bins,
where T is the number of construction threads, is sufficient.
Current implementation performs initial clustering over a
single selected dimension. Using 2D min-max bins (2D grids
of counters of AABBs min and max vertices) for initial clus-
tering produces higher quality kd-trees for many scenes as it
provides a choice of 2 dimensions for split selection main-
taining reasonable object median approximation when bins
are re-used. So this is the topic for further investigation. On
the other hand even for 128 threads only 7 = log, (128) tree
levels are generated by initial clustering when typical tree
depth range is 30-50 for moderately complex scenes, so the
cost of switching to 2D or 3D bins might consume all the
benefits. The second reason is that accurate SAH estimation
is much more important for deep tree levels.

We implemented our parallelization approach around
the existing sequential kd-tree construction algorithm fully
reusing the existing serial code. Parallel initial clustering (to-
gether with AABB, normal computations and conversion to
accelerated format for each triangle) takes about 10% of the
total kd-tree construction time. Parallel construction of sub-
trees takes the rest 90% of the time.

Usually a dynamic scene has some static environment.
Since the offline kd-tree builder for static scenes produces
much higher quality kd-tree, handling static and dynamic
geometry in two separate kd-trees often results in best per-
formance. Especially in cases when large fraction of rays hit
static geometry (like game characters in a building).

Primitives are often combined into high-level geometric
objects that are further combined into a scene graph hier-
archy. Using this global information to build an individual
kd-tree for each object and building a top-level kd-tree treat-
ing objects as primitives works really well in case of large
number of non-deforming objects. [Wal04] demonstrated
impressive performance of such approach for the case of

multiple instances of the same geometry. Replacing initial
clusters built by the brute force pass over the primitives (like
object median based presented in this paper) with the clus-
ters provided by the global scene information (like nodes of
the scene graph) for dynamic scenes produces ambiguous
results.

Since our kd-tree building algorithm is not restricted to
a certain primitive type, it easily handles other kd-trees as
primitives. "OPERA TEAM" scene on Figure 1 consists of
small static portion and large number of individual dancers
that can be handled as lower-level kd-trees.

We performed some number of experiments with con-
structing the top-level kd-tree over the set of kd-trees. We
found that construction of top-level kd-tree using global
information pays off well for 4 and more different non-
overlapping objects (or for heavily occluded scenes). How-
ever, in case when different kd-trees overlap the top-level
kd-tree performance degrades heavily.

6. Results

We have tested our interactive ray-tracing on a 2-way In-
tel ®CoreTM2 Duo machine (so 4 threads on 4 cores). We
employ multi-threaded 4x4 SIMD ray packet traversal. We
intentionally don’t perform any tweaking of building param-
eters for any particular scene or any particular type of mo-
tion.

To evaluate efficiency of our technique we compare ren-
dering speeds for the same scene using kd-trees produced by
the off-line high quality building algorithm and by dynamic
builder presented here, see Table 1. With rendering speed
around 70% of the speed measured for highly-optimized
trees our approach allows 120-300x construction time speed

up.

scene Highly  opti-
and  # | mized kd-trees
triangles [CONSI. render. constr. [render.
time  |perf. time |perf.

Our routine

Happy
Buddha

1087K  [90.1s |22.1fps | 0.45s [15.4 fps

Blade
1765K  [88.2s |11.04 fps| 0.69s |7.8 fps

Soda
Hall
2195K

152.7s25.8 fps | 0.47s |19.3 fpg

Table 1: Construction time and rendering performance.
Rendering performance numbers are for 1024x1024 reso-
lution, using lighting (1 point light source) and shadows.
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Memory consumption becomes the important factor when
constructing a kd-tree for a large model. We measured the
peak size of memory footprint for models with 7M and 10M
triangles, see Table 2. Analysis shown that full-featured of-
fline builder we used as reference in the previous table con-
sumes over 2GB for each case. So with respect to memory
consumption our algorithm is promising for up to 10M mod-
els.

scene
and
triangles

constr. | render. | peak
time perf. memory

Asian
Dragon,
7219K | 1.7s

291fps | 1.24Gb

Thai
Statue,
10M 2.46s

3.14fps | 1.42Gb

Table 2: Construction time, rendering performance and
memory footprint size for large models. Performance num-
bers are for 1024x1024 resolution, using lighting (1 point
light source) and shadows.

We compare time to image that includes tree construction,
ray tracing, and simple shading with data published for the
fastest rendering systems, see Table 3.

Fast kd-tree construction algorithms for dynamic scenes
produce lower quality kd-trees comparing to off-line
builders for static scenes. So time to image for dynamic
scenes depends on both resolution and kd-tree construction
time, see Figure 6. Higher resolutions require better kd-tree
quality than lower resolutions. Automatic kd-tree parameters
tuning depending on given resolution is a subject for further
research.

We also compared our dynamic scene performance to the
recent publications using the same 3D data. We construct the
kd-tree from scratch every frame without any prior knowl-
edge of motion. "Cowboys" scene demonstrates the idea of
handling static and dynamic geometry in two separate kd-
trees (see section 5). Table 4 shows comparison results tak-
ing in account total construction and rendering time. Table 4
shows that we achieve interactive frame rates for high res-
olution on scenes of various complexity and structure. To
address difference in measurements due to different resolu-
tions, CPU speeds and number of cores in table 4 we report
our results for one and 4 threads (using different CPUs and
resolutions).

To make sure that the initial clustering of geometry is opti-
mal for load balancing and does not affect kd-tree quality we
constructed kd-trees using variable number of threads and
measured rendering speed with fixed number of threads. As
rendering speed reduces only slightly (10-15%) we can con-
clude that degradation of kd-tree quality with the increasing
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Our Our
scene [WHO6]) [WKO06] routine [routine
and #
triangles dual- dual-

AMD |Intel Intel Intel
Opteron [PAHT |Core2 |Core2
Duo Duo

2.6 GHz[2.8 GHz (3.0 GHz|3.0 GHz

640x480(640x480}640x480[640x480
1core |1core |1 core |4 cores

Shirley
— Scene 6
3 804 n.a. 0.083 10.023  |0.006

72/ )] [Harpy
“~9 [Buddha,
i/ 1087K 322 [1.837 [0.696 [0.181

Stanford
— Bunny,
< 69k 4.8 0.176  0.104  |0.027
SSh Stanford
@ Dragon,
> 863k  |23.9 1.557 ]0.751 |0.195

Blender
W Suzanne
251K |n.a. 0.448 [0.235 ]0.062
'Ward
m Conf.,
%1 [1065K |n.a. 1.523  [0.628 |0.161

Table 3: Time to image (in seconds) for [WHO06] and
[WKO06], data were taken from [WKO06], in comparison with
our approach.

number of construction threads is negligible. Figure 7 shows
rendering speed for 4 threads with kd-tree constructed by 2
to 256 threads.

We tested scalability of presented technique on SMP ma-
chine with 4 cores, see Figure 8. It shows that FPS count
for both construction and rendering grows roughly linearly
with number of threads achieving 3.9x speedup for 4 threads.
Scalability is slightly better for large models.

7. Conclusion and Future Work

We propose new parallel linearly scalable algorithm for fast
construction of acceleration data structure at each frame
without prior knowledge about geometry motion. Resulting
kd-tree is fully compatible with highly optimized traversal
using frustum implementation like MLRT [RSHOS5].

We demonstrated that conventional kd-tree is suitable data
structure for interactive ray tracing of dynamic scenes as
we presented the fast construction algorithm producing kd-
tree of reasonable quality. The algorithm benefits from us-
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scene, BVH BIH Our routine  |Our routine  [Our routine  [Our routine
j;;‘i“f‘fl;sts AMD Opteronlintel PAHT |[Intel PAHT |[Intel P4HT |dual Intel Core2|dual Intel Core2
& 2.6 GHz 2.8 GHz 2.8 GHz 2.8 GHz Duo 3.0 GHz |Duo 3.0 GHz
1024 x 1024 (640 x 480  [1024 x 1024 640 x 480  |640 x 480 1024 x 1024
1 core 1 core 1 core 1 core 1 core 4 cores
Toys,
11K
animated triangles,
i1 point light 10.5 fps* n.a. 3.0 fps 9.0 fps 22.9 fps 23.5 fps
FairyForest,
animated triangles,
a2 point lights 2.16 fps* 1.79 fps 0.8 fps 2.0 fps 3.1 fps 5.84 fps
Cowboys,
63K static and 171K
animated triangles,
2point lights n.a. n.a. 1.0 fps 2.3 fps 5.0 fps 7.2 fps

Table 4: Framerate comparison results for 3 dynamic scenes. BVH times from [WBS07], BIH times from [WKO06].
*Note that [WBSO07 ] perform the analysis of all existing poses (e.g. it takes 31 seconds for Fairy scene with only 20 key frames)

of the models before animation.

Dynamic FPS (BuildTime)

L ==&—Dynamic FPS (BuildTime)
4 for 1024x1024

i —— Dynamic FPS (BuildTime)
3 for 512x512

\o\\-i:\“"

‘ Bui[d Time (se‘c) ‘

0 0.2 0.4 0.6 0.8

Figure 6: Build time vs. rendering time in terms of resulting
FPS for different resolutions. The rendered dynamic scene is
the same.

ing multiple construction threads. Presented memory pools
management is inherently thread-safe and efficient.

Described technique allows for ray tracing of complex an-
imated models at a performance that is better than any ray
tracing performance for dynamic models we are aware of.

In future we plan investigation in the following directions.
Since kd-tree construction requires multiple passes over ge-
ometrical primitives it is a bandwidth hungry task. So careful
memory bandwidth handling is a top priority. To address that

20,00

[ e o .
“—Hl\\_" ——HappyBuddal
18,00
16,00
iy —&—Blade
14,00
12,00
% ——Soda Hall
o 10,00
8,00
Goblin,
120-th frame
6,00 (see figure 1
for details)
4,00
e —@— OperaTeam,
1-st frame
2,00 (see figure 1
for details)
0,00
1 2 3 4 5 6 7 8
log number of threads

Figure 7: Quality of kd-tree with number of threads that take
part in construction. Rendering performed at 1024x1024
resolution, using lighting and shadows (Goblin - 2 point
lights, OperaTeam - 4 point lights, the other models - 1 point
light).

we can reduce the work set for passes over the primitives
(e.g. compress AABB data using quantization), reduce the
number of passes over large number of primitives (e.g. re-
using the binning information) and offload some of the kd-
tree construction steps to a GPU. Vectorization using SIMD
instructions will increase performance of the construction al-
gorithm.

(© The Eurographics Association and Blackwell Publishing 2007.
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25,00
20,00 F
Fps15~00 L 7 1 Toys
F I —— Cowboys
10,00 | — ! —a— Goblin
so0 |
0,00 —— : : :
1 7 3 4
Number of threads

Figure 8: Performance scaling with number of CPUs. Per-
Jormance numbers are for 1024x1024 resolution, with light-
ing and texturing. The details of the Toys and Cowboys
scenes could be taken from Table 4, Goblin scene is de-
scribed at caption of Figure 1.

The algorithm presented in the paper is perfectly suitable
for on-demand (aka lazy) construction of kd-tree nodes so
we plan to experiment with such implementation.

Since quality of kd-tree constructed by offline builder is
approximately 1.43x better we plan to research benefits of
enabling various cost reduction methods depending on a tree
level. For example, using the cost model at initial clustering
stage (using 2D or 3D binning), bins re-using at high levels,
re-binning at lower levels, using split plane - triangle inter-
section points as split candidates (aka perfect splits) at very
low levels when the working set fits into caches.

Large number of threads and complex construction tech-
niques will require more careful management of tasks at a
finer granularity, because using the cost model can produce
tasks with number of primitives different by order of magni-
tude.

Automatic calculation of kd-tree construction parameters
for different image resolutions is also a future research sub-
ject.
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